Research on Wet Clutch Switching Quality in the Shifting Stage of an Agricultural Tractor Transmission System
Yuting Chen,
Zhun Cheng () and
Yu Qian
Additional contact information
Yuting Chen: Department of Vehicle Engineering, Nanjing Forestry University, Nanjing 210037, China
Zhun Cheng: Department of Vehicle Engineering, Nanjing Forestry University, Nanjing 210037, China
Yu Qian: College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
Agriculture, 2022, vol. 12, issue 8, 1-16
Abstract:
In order to improve the working quality of wet clutch switching in an agricultural tractor, in this paper, we took a power shift system composed of multiple wet clutches as the research object for full-factorial performance measurement, multi-factor analysis of the degree of influence, establishment of a single evaluation index model, formation of a comprehensive evaluation index, and formulation of adjustable factor control strategies. We studied the simulation test platform of an agricultural tractor power transmission system based on the SimulationX software and obtained 225 sets of sample data under a full-use condition. Partial least squares and range analysis were applied to comprehensively analyze the influence of multiple factors on the working quality of wet clutches. In this paper, we proposed a modeling method for a single evaluation index of the wet clutch (combined with polynomial regression and tentative method, the goal is determined in the form of a model with the maximum coefficient of determination) and two control strategy optimization methods for the wet clutch adjustable factors, i.e., Method 1 (integrated optimization) and Method 2 (step-by-step optimization), both methods were based on an improved genetic algorithm. The results showed that oil pressure, flow rate, and load had significant effects on the dynamic load characteristics (the degrees were 0.38, −0.44, and −0.63, respectively, with a negative sign representing an inverse correlation); rate of flow and load had significant effects on speed drop characteristics (the degrees were −0.56 and 0.73, respectively). A multivariate first-order linear model accurately described the dynamic load characteristics ( R 2 = 0.9371). The accuracy of the dynamic load characteristic model was improved by 5.5037% after adding the second-order term and interaction term of oil pressure. The polynomial model containing the first-order oil pressure, first-order flow rate, second-order flow rate, and interaction terms could explain the speed drop characteristics, with an R 2 of 0.9927. If agricultural tractors operate under medium and large loads, the oil pressure and flow rate in their definitional domains should be small and large values, respectively; if operating under small loads, both oil pressure and flow rate should be high. When the wet clutch dynamic load and speed drop characteristics were improved, the sliding friction energy loss also decreased synchronously (the reduction could reach 70.19%).
Keywords: simulation; quality improvement; improved genetic algorithm; full-factorial test; single evaluation index modeling method; control strategy (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/2077-0472/12/8/1174/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/8/1174/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:8:p:1174-:d:882350
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().