Meta-Analysis of Effects of Melatonin Treatment on Plant Drought Stress Alleviation
Yuzhe Wang,
Siyu Gun,
Yaoyu Li and
Laiye Qu ()
Additional contact information
Yuzhe Wang: Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
Siyu Gun: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Beijing 100085, China
Yaoyu Li: Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
Laiye Qu: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Beijing 100085, China
Agriculture, 2022, vol. 12, issue 9, 1-13
Abstract:
Due to the increasing frequency of extreme drought events worldwide in recent years, improving the adaptability of plants to arid environments has become an important research topic. In particular, many studies have investigated the effects of melatonin on drought stress mitigation in plants. However, most of these studies were limited in terms of the number of sampling sites or regional scale, and thus we lack a comprehensive understanding of the effects of the exogenous application of melatonin on drought stress mitigation in plants on a global scale. In this study, we integrated previous research into the physiological and growth effects of melatonin application in arid environments worldwide and analyzed the response of plants to different melatonin concentrations, application methods, and different drought degrees in order to provide a scientific basis for promoting the use of melatonin in alleviating plant drought stress. The data used in this study were obtained from the “Web of Science” database, where the keywords “drought & melatonin” were used to search the relevant literature. In total, 61 valid publications with 140 data sets were retrieved. A meta-analysis was performed using the data with no melatonin treatment as the control group and melatonin treatment as the experimental group. Melatonin application significantly increased the plant biomass, chlorophyll content, and antioxidant enzyme activity to alleviate the damage caused by drought stress. The accumulated biomass and accumulation of chlorophyll in plants varied with the melatonin concentration. The threshold value range was identified as 80–120 μmol L −1 , and the effect of melatonin on the accumulation of biomass and chlorophyll decreased gradually above this range. In addition, the effects of various spraying methods on the mitigation of drought stress in plants differed significantly. Soil application had greater effects on reactive oxygen species scavengers in plants than foliar spraying. Moreover, the plant leaf membrane lipid peroxidation degree was relatively low, and the plant body chlorophyll content was higher under soil application than foliar spraying, and the cumulative biomass was lower than that with foliar spraying. The effects of melatonin on mitigating plant drought stress also varied under different drought levels when using the same melatonin concentration and application method. Soil irrigation is most effective if the main aim is to improve plant stress resistance and the below-ground root biomass, but foliar spraying is most effective for increasing photosynthesis and plant biomass.
Keywords: drought stress; melatonin; meta-analysis; plant growth (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/12/9/1335/pdf (application/pdf)
https://www.mdpi.com/2077-0472/12/9/1335/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:12:y:2022:i:9:p:1335-:d:901134
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().