Prospects for Bioenergy Development Potential from Dedicated Energy Crops in Ecuador: An Agroecological Zoning Study
Christian R. Parra,
Angel D. Ramirez (),
Luis Manuel Navas-Gracia (),
David Gonzales and
Adriana Correa-Guimaraes
Additional contact information
Christian R. Parra: TADRUS Research Group, Department of Agricultural and Forestry Engineering, University of Valladolid (UVa), Campus Universitario de Palencia, Avenida de Madrid, 50, 34004 Palencia, Spain
Angel D. Ramirez: Escuela Superior Politecnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil EC090902, Ecuador
Luis Manuel Navas-Gracia: TADRUS Research Group, Department of Agricultural and Forestry Engineering, University of Valladolid (UVa), Campus Universitario de Palencia, Avenida de Madrid, 50, 34004 Palencia, Spain
David Gonzales: Escuela Superior Politecnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil EC090902, Ecuador
Adriana Correa-Guimaraes: TADRUS Research Group, Department of Agricultural and Forestry Engineering, University of Valladolid (UVa), Campus Universitario de Palencia, Avenida de Madrid, 50, 34004 Palencia, Spain
Agriculture, 2023, vol. 13, issue 1, 1-25
Abstract:
Most climate change mitigation scenarios rely on the incremental use of biomass as energy feedstock. Therefore, increasing the share of alternative sustainable energy sources as biomass is crucial to provide both peak and base electricity loads in future scenarios. The bioenergy potential of Ecuador has been addressed for agricultural by-products but not for dedicated bioenergy crops. Agricultural zoning studies have been developed for food crops but not for energy crops. Currently, the bioenergy share of electricity produced in Ecuador (1.4%) comes mainly from the use of sugar cane bagasse from sugar production. This study aims to identify potential sustainable bioenergy resources for continental Ecuador using agroecological zoning methodologies and considerations regarding land management, food security, in-direct land use change and ecological and climate change risks. The results identified 222,060.71 ha available to grow dedicated bioenergy crops and potential electricity production of 8603 GWh/year; giant reed ranks first with a potential net energy yield of 4024 GWh per year, and Manabí province presents the highest potential with 3768 GWh/year. Large-scale deployment of bioenergy in Ecuador would require the study of sustainability considerations of each project. The species studied are traditional bioenergy crops; research on novel species is encouraged.
Keywords: electricity; bioenergy; biomass; land; climate change; availability; sustainability; GIS; Ecuador; Latin America (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2077-0472/13/1/186/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/1/186/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:1:p:186-:d:1032441
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().