EconPapers    
Economics at your fingertips  
 

How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe

Stan Selbonne (), Loïc Guindé, François Causeret, Pierre Chopin, Jorge Sierra, Régis Tournebize and Jean-Marc Blazy
Additional contact information
Stan Selbonne: Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Research Unit ASTRO, F-97170 Petit-Bourg, Guadeloupe, France
Loïc Guindé: Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Research Unit ASTRO, F-97170 Petit-Bourg, Guadeloupe, France
François Causeret: Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Research Unit ASTRO, F-97170 Petit-Bourg, Guadeloupe, France
Pierre Chopin: Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, P.O. Box 7043, SE-750 07 Uppsala, Sweden
Jorge Sierra: Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Research Unit ASTRO, F-97170 Petit-Bourg, Guadeloupe, France
Régis Tournebize: Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Research Unit ASTRO, F-97170 Petit-Bourg, Guadeloupe, France

Agriculture, 2023, vol. 13, issue 2, 1-21

Abstract: Conceptualized by the Food and Agriculture Organization in 2010, climate-smart agriculture aims to simultaneously tackle three main objectives. These are increasing food security, building the resilience of agricultural systems for adaptation to climate change and mitigation of GHG. As much research focuses on one of these three objectives, our understanding of how agricultural systems address these three challenges simultaneously is limited by the lack of a comprehensive evaluation tool. In order to fill this gap, we have developed a generic evaluation framework that comprises 19 indicators that we measured in a sample of 12 representative farms of the North Basse-Terre region in Guadeloupe. The evaluation revealed clear differences in the performance of these farming systems. For example, nutritional performance varied from 0 to 13 people fed per hectare, the average potential impact of climatic conditions varied from 27% to 33% and the GHG emissions balance varied from +0.8 tCO 2eq ·ha −1 to +3.6 tCO 2eq ·ha −1 . The results obtained can guide the design of innovative production systems that better meet the objectives of climate-smart agriculture for the study region. The evaluation framework is intended as a generic tool for a common evaluation basis across regions at a larger scale. Future prospects are its application and validation in different contexts.

Keywords: climate-smart agriculture; indicators; sustainability; farm; typology (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/2/297/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/2/297/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:2:p:297-:d:1047236

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:297-:d:1047236