EconPapers    
Economics at your fingertips  
 

Engineering Design, Kinematic and Dynamic Analysis of High Lugs Rigid Driving Wheel, a Traction Device for Conventional Agricultural Wheeled Tractors

Hafiz Md-Tahir, Jumin Zhang, Yong Zhou, Muhammad Sultan, Fiaz Ahmad, Jun Du, Amman Ullah, Zawar Hussain and Junfang Xia ()
Additional contact information
Hafiz Md-Tahir: Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China
Jumin Zhang: Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China
Yong Zhou: Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China
Muhammad Sultan: Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan
Fiaz Ahmad: Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan
Jun Du: Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China
Amman Ullah: Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan
Zawar Hussain: Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan
Junfang Xia: Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China

Agriculture, 2023, vol. 13, issue 2, 1-21

Abstract: Traction failure on loose terrain is common in conventional agricultural wheeled tractors due to poor traction ability and lower power transfer efficiency of drive wheels, which leads to excessive energy consumption and soil compaction in agriculture. To overcome the problem, this paper presents a new design of a rigid lugged wheel for use in field tillage operations. This wheel was designed according to field operational requirements and also provided with rubber pads for smooth on-road drives. Kinematic and dynamic analysis of new wheel designs were carried out to study how they move, how they interact with the soil, and how they generate drive force in loose terrain soil. The relationship of wheel lug motion trajectories, displacement, and velocity of the wheel relative to field conditions, different travel reduction rates, and lug penetration/wheel sinkage were analyzed. Wheel-terrain interaction and shear stress-shear displacement relationships when the wheel is driven in soft, deformable terrain were studied using classic soil mechanics principles. It is found that the component of thrust in the direction of driving, i.e., driving force, is ranged between 81.52% and 86.17%, while the vertical component is reported to be less than 30% and further decreases to 9%, which is the compaction avoiding factor. The relationships, thus developed, of wheel parameters, soil stress and thrust characteristics, and wheel drive force were derived and revealed that the traction performance, power transfer efficiency, and trafficability of tractors in loose terrain can be improved by using the newly proposed wheel. A finite element method was used to analyze the designed wheel model for structural stability and optimization. The theoretical analysis results of the new drive wheel are convincing, so further tests and field operation research are recommended for sustainable adoption.

Keywords: intensive tillage; high traction demand; loose field soil; traction failure; rigid lugged wheel; kinematic and dynamic analysis; traction performance (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/2/493/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/2/493/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:2:p:493-:d:1073594

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:493-:d:1073594