EconPapers    
Economics at your fingertips  
 

An Improved Mask RCNN Model for Segmentation of ‘Kyoho’ ( Vitis labruscana ) Grape Bunch and Detection of Its Maturity Level

Yane Li, Ying Wang, Dayu Xu, Jiaojiao Zhang and Jun Wen ()
Additional contact information
Yane Li: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
Ying Wang: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
Dayu Xu: College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
Jiaojiao Zhang: College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
Jun Wen: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

Agriculture, 2023, vol. 13, issue 4, 1-18

Abstract: The ‘Kyoho’ ( Vitis labruscana ) grape is one of the mainly fresh fruits; it is important to accurately segment the grape bunch and to detect its maturity level for the construction of an intelligent grape orchard. Grapes in the natural environment have different shapes, occlusion, complex backgrounds, and varying illumination; this leads to poor accuracy in grape maturity detection. In this paper, an improved Mask RCNN-based algorithm was proposed by adding attention mechanism modules to establish a grape bunch segmentation and maturity level detection model. The dataset had 656 grape bunches of different backgrounds, acquired from a grape growing environment of natural conditions. This dataset was divided into four groups according to maturity level. In this study, we first compared different grape bunch segmentation and maturity level detection models established with YoloV3, Solov2, Yolact, and Mask RCNN to select the backbone network. By comparing the performances of the different models established with these methods, Mask RCNN was selected as the backbone network. Then, three different attention mechanism modules, including squeeze-and-excitation attention (SE), the convolutional block attention module (CBAM), and coordinate attention (CA), were introduced to the backbone network of the ResNet50/101 in Mask RCNN, respectively. The results showed that the mean average precision ( mAP ) and mAP 0.75 and the average accuracy of the model established with ResNet101 + CA reached 0.934, 0.891, and 0.944, which were 6.1%, 4.4%, and 9.4% higher than the ResNet101-based model, respectively. The error rate of this model was 5.6%, which was less than the ResNet101-based model. In addition, we compared the performances of the models established with MASK RCNN, adding different attention mechanism modules. The results showed that the mAP and mAP 0.75 and the accuracy for the Mask RCNN50/101 + CA-based model were higher than those of the Mask RCNN50/101 + SE- and Mask RCNN50/101 + CBAM-based models. Furthermore, the performances of the models constructed with different network layers of ResNet50- and ResNet101-based attention mechanism modules in a combination method were compared. The results showed that the performance of the ResNet101-based combination with CA model was better than the ResNet50-based combination with CA model. The results showed that the proposed model of Mask RCNN ResNet101 + CA was good for capturing the features of a grape bunch. The proposed model has practical significance for the segmentation of grape bunches and the evaluation of the grape maturity level, which contributes to the construction of intelligent vineyards.

Keywords: Mask RCNN algorithm; instance segmentation; attention module; convolutional neural network; grape maturity level detection (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/4/914/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/4/914/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:4:p:914-:d:1129620

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:914-:d:1129620