Influence of Plant Growth Retardants and Nitrogen Doses on the Content of Plant Secondary Metabolites in Wheat, the Presence of Pests, and Soil Quality Parameters
Joanna Lemanowicz (),
Bożena Dębska,
Robert Lamparski,
Agata Michalska,
Jarosław Pobereżny,
Elżbieta Wszelaczyńska,
Agata Bartkowiak,
Małgorzata Szczepanek,
Magdalena Banach-Szott and
Tomasz Knapowski
Additional contact information
Joanna Lemanowicz: Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, 6/8 Bernardyńska Street, 85-029 Bydgoszcz, Poland
Bożena Dębska: Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, 6/8 Bernardyńska Street, 85-029 Bydgoszcz, Poland
Robert Lamparski: Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796 Bydgoszcz, Poland
Agata Michalska: Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, 6/8 Bernardyńska Street, 85-029 Bydgoszcz, Poland
Jarosław Pobereżny: Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796 Bydgoszcz, Poland
Elżbieta Wszelaczyńska: Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796 Bydgoszcz, Poland
Agata Bartkowiak: Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, 6/8 Bernardyńska Street, 85-029 Bydgoszcz, Poland
Małgorzata Szczepanek: Department of Agronomy, Bydgoszcz University of Science and Technology, 7 Kaliskiego St., 85-796 Bydgoszcz, Poland
Magdalena Banach-Szott: Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, 6/8 Bernardyńska Street, 85-029 Bydgoszcz, Poland
Tomasz Knapowski: Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, 6/8 Bernardyńska Street, 85-029 Bydgoszcz, Poland
Agriculture, 2023, vol. 13, issue 6, 1-22
Abstract:
Wheat is the cereal most susceptible to lodging, particularly during the flowering period and at the early ripening stage. The use of plant growth retardants (PGRs) is especially recommended when intensive nitrogen (N) fertilisation is applied, which increases the susceptibility of plants to lodging. This paper presents the results of tests into the effects of PGRs (PGR0—control; PGR1—chlormequat chloride (CCC) + trinexapac-ethyl (TE); PGR2—chlormequat chloride (CCC) + ethephon (ET)), and N dose—N0, N20, N40, and N60 [0, 20, 40, and 60 kg N ha −1 ] on the content of selected plant secondary metabolites (PSM) in the Indian dwarf wheat ( Triticum sphaerococcum Percival) of the Trispa cultivar, and on the abundance of insect pests. In the developmental stage of wheat (BBCH 39), insects were collected with an entomological net. The study also investigated the effect of experimental factors on the physicobiochemical properties of the soil (pH in KC, granulometric composition, total organic carbon TOC, total nitrogen TN, fractional composition of humus, and the activity of enzymes). An increase in the plant secondary metabolite (PSM) and FRAP (ferring reducing ability of plasma) contents following the application of PGRs and N fertilisation already from as low a rate as 20 kg ha −1 was demonstrated. A significant positive correlation was noted between the abundance of Oulema spp. and the contents of total polyphenols, chlorogenic acid, and FRAP. No such relationship was noted for Aphididae or Thysanoptera. TOC content was higher on the plots on which N fertilisation was applied at the highest rate and after the application of PGRs. The factor determining the TN content was N fertilisation. Soil samples of the PGR0 N0 treatment were characterised by the greatest proportion of carbon in the humic and fulvic acid fractions and by the smallest proportion of carbon in the humin fraction. N fertilisation increased the proportion of carbon in the humin fraction on the plots on which no PGRs were applied. The study demonstrated an increase in the activity of oxidoreductive enzymes following the application of higher N rates. The application of PGRs resulted in no inhibition of enzymes in the soil compared to the control (PGRs0).
Keywords: phenolic compounds; FRAP; pests; organic carbon; fractional composition of humus; enzymes (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2077-0472/13/6/1121/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/6/1121/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:6:p:1121-:d:1156000
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().