Simulation Research on Cotton Stalk Cutting and Crushing Based on ANSYS/LS-DYNA and Field Experiments
Peng Wang,
Xuegeng Chen () and
Haojun Wen
Additional contact information
Peng Wang: College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
Xuegeng Chen: College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
Haojun Wen: College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
Agriculture, 2023, vol. 13, issue 6, 1-24
Abstract:
In order to solve the problem of high straw content in recovered residual film and the low rate of qualified straw crushing in combination with a front-mounted cotton-straw-crushing device, the cutting and crushing mechanisms of cotton stalks were studied based on ANSYS/LS-DYNA. The height h and dip angle α of the fixed blade were determined to be 30 mm and 75° through a finite element analysis. On the basis of the device design, explicit dynamic models of the cutting and crushing of a single cotton stalk were established based on ANSYS/LS-DYNA. The results of the dynamic analysis revealed the cutting mechanism of the cotton stalk, and the influences of the cutting edge angle γ and front baffle height h 1 on cotton stalk cutting were studied by using single-factor simulation tests. An edge angle of γ = 45° and a height of h 1 = 265 mm were determined. Meanwhile, the mechanism of cotton straw crushing was revealed, and the motion states of the straw were studied at different times. The results of the simulation experiments on the influence of the cutter shaft’s rotational speed showed that with an increase in the cutter shaft’s speed, the rate of qualified crushing and the removal rate were both increased. At the design speed of n = 1800 RPM, the rate of qualified crushing was 84.6%, and the removal rate was 95.1%. Then, field experiments were carried out. The test results were as follows: the stubble height was 8.0 cm, the rate of qualified straw crushing was 91.8%, the clearance rate of film-surface impurities was 92.3%, and the film content was 3.6%, which met the working quality requirements (not less than 85%) of NYT 500-2015: “Operating quality for straw-smashing machines”.
Keywords: front-mounted cotton-straw-crushing device; simulation research; ANSYS/LS-DYNA; cutting mechanism; crushing mechanism; field experiment (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/13/6/1268/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/6/1268/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:6:p:1268-:d:1174413
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().