EconPapers    
Economics at your fingertips  
 

An Integrated Multi-Model Fusion System for Automatically Diagnosing the Severity of Wheat Fusarium Head Blight

Ya-Hong Wang, Jun-Jiang Li and Wen-Hao Su ()
Additional contact information
Ya-Hong Wang: College of Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China
Jun-Jiang Li: School of Mechanical Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710048, China
Wen-Hao Su: College of Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China

Agriculture, 2023, vol. 13, issue 7, 1-26

Abstract: Fusarium has become a major impediment to stable wheat production in many regions worldwide. Infected wheat plants not only experience reduced yield and quality but their spikes generate toxins that pose a significant threat to human and animal health. Currently, there are two primary methods for effectively controlling Fusarium head blight (FHB): spraying quantitative chemical agents and breeding disease-resistant wheat varieties. The premise of both methods is to accurately diagnosis the severity of wheat FHB in real time. In this study, a deep learning-based multi-model fusion system was developed for integrated detection of FHB severity. Combination schemes of network frameworks and backbones for wheat spike and spot segmentation were investigated. The training results demonstrated that Mobilev3-Deeplabv3+ exhibits strong multi-scale feature refinement capabilities and achieved a high segmentation accuracy of 97.6% for high-throughput wheat spike images. By implementing parallel feature fusion from high- to low-resolution inputs, w48-Hrnet excelled at recognizing fine and complex FHB spots, resulting in up to 99.8% accuracy. Refinement of wheat FHB grading classification from the perspectives of epidemic control (zero to five levels) and breeding (zero to 14 levels) has been accomplished. In addition, the effectiveness of introducing HSV color feature as a weighting factor into the evaluation model for grading of wheat spikes was verified. The multi-model fusion algorithm, developed specifically for the all-in-one process, successfully accomplished the tasks of segmentation, extraction, and classification, with an overall accuracy of 92.6% for FHB severity grades. The integrated system, combining deep learning and image analysis, provides a reliable and nondestructive diagnosis of wheat FHB, enabling real-time monitoring for farmers and researchers.

Keywords: deep learning; wheat; fusarium head blight; image segmentation; all-in-one detection (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/7/1381/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/7/1381/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:7:p:1381-:d:1191996

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1381-:d:1191996