VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition
Xiangpeng Fan and
Zhibin Guan ()
Additional contact information
Xiangpeng Fan: Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Zhibin Guan: Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Agriculture, 2023, vol. 13, issue 8, 1-19
Abstract:
The automatic recognition of crop diseases based on visual perception algorithms is one of the important research directions in the current prevention and control of crop diseases. However, there are two issues to be addressed in corn disease identification: (1) A lack of multicategory corn disease image datasets that can be used for disease recognition model training. (2) The existing methods for identifying corn diseases have difficulty satisfying the dual requirements of disease recognition speed and accuracy in actual corn planting scenarios. Therefore, a corn diseases recognition system based on pretrained VGG16 is investigated and devised, termed as VGNet, which consists of batch normalization (BN), global average pooling (GAP) and L2 normalization. The performance of the proposed method is improved by using transfer learning for the task of corn disease classification. Experiment results show that the Adam optimizer is more suitable for crop disease recognition than the stochastic gradient descent (SGD) algorithm. When the learning rate is 0.001, the model performance reaches a highest accuracy of 98.3% and a lowest loss of 0.035. After data augmentation, the precision of nine corn diseases is between 98.1% and 100%, and the recall value ranges from 98.6% to 100%. What is more, the designed lightweight VGNet only occupies 79.5 MB of space, and the testing time for 230 images is 75.21 s, which demonstrates better transferability and accuracy in crop disease image recognition.
Keywords: VGNet; corn diseases; leaf detection; lightweight; transfer learning; agriculture (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2077-0472/13/8/1606/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/8/1606/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:8:p:1606-:d:1217016
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().