EconPapers    
Economics at your fingertips  
 

Target Soybean Leaf Segmentation Model Based on Leaf Localization and Guided Segmentation

Dong Wang, Zetao Huang, Haipeng Yuan, Yun Liang (), Shuqin Tu and Cunyi Yang
Additional contact information
Dong Wang: College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
Zetao Huang: College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
Haipeng Yuan: College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
Yun Liang: College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
Shuqin Tu: College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
Cunyi Yang: College of Agriculture, South China Agricultural University, Guangzhou 510642, China

Agriculture, 2023, vol. 13, issue 9, 1-18

Abstract: The phenotypic characteristics of soybean leaves are of great significance for studying the growth status, physiological traits, and response to the environment of soybeans. The segmentation model for soybean leaves plays a crucial role in morphological analysis. However, current baseline segmentation models are unable to accurately segment leaves in soybean leaf images due to issues like leaf overlap. In this paper, we propose a target leaf segmentation model based on leaf localization and guided segmentation. The segmentation model adopts a two-stage segmentation framework. The first stage involves leaf detection and target leaf localization. Based on the idea that a target leaf is close to the center of the image and has a relatively large area, we propose a target leaf localization algorithm. We also design an experimental scheme to provide optimal localization parameters to ensure precise target leaf localization. The second stage utilizes the target leaf localization information obtained from the first stage to guide the segmentation of the target leaf. To reduce the dependency of the segmentation results on the localization information, we propose a solution called guidance offset strategy to improve segmentation accuracy. We design multiple guided model experiments and select the one with the highest segmentation accuracy. Experimental results demonstrate that the proposed model exhibits strong segmentation capabilities, with the highest average precision (AP) and average recall (AR) reaching 0.976 and 0.981, respectively. We also compare our segmentation results with current baseline segmentation models, and multiple quantitative indicators and qualitative analysis indicate that our segmentation results are better.

Keywords: plant phenotype; soybean leaf; image segmentation; target localization (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/9/1662/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/9/1662/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:9:p:1662-:d:1223119

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1662-:d:1223119