EconPapers    
Economics at your fingertips  
 

What Is More Important to Host-Seeking Entomopathogenic Nematodes, Innate or Learned Preference?

Alexander Gaffke (), Maritza Romero and Hans Alborn
Additional contact information
Alexander Gaffke: USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
Maritza Romero: USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
Hans Alborn: USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA

Agriculture, 2023, vol. 13, issue 9, 1-9

Abstract: Entomopathogenic nematodes (EPNs), small soil-dwelling non-segmented roundworms, are obligate parasites of insects and commonly used in agriculture for biological control of insect pests. For successful reproduction, EPNs must identify, move towards, and successfully infect a suitable insect host in a chemically complex soil environment. EPNs can have innate host insect preferences and can be attracted to semiochemicals associated with that host. They can also develop strong learned preferences for chemical signals associated with the presence of a host, such as herbivory-induced volatiles. We hypothesized that simultaneous manipulation of innate and learned preferences could result in increased biological control services of EPNs in agriculture. Separate cohorts of the EPN Steinernema diaprepesi were raised on two insect hosts, Galleria mellonella and Tenebrio molitor , for multiple generations until the nematodes in a dual-choice olfactometer exhibited preference for the host they were reared on. Subsequently, the two strains of nematodes were imprinted on three plant-produced terpenoids of agricultural significance: pregeijerene, β-caryophyllene, and α-pinene. After exposure to one of the plant compounds, the behavior of the EPNs was assayed in an olfactometer where the two host insects were presented with and without the plant compounds. We found that plant volatile exposure increased the infection rate of the nematodes, and some host–compound combinations proved to be attractive, but other combinations appeared to become repellent. These results indicate that learned preference is neither subordinate nor superior to innate preference, and that infection efficiency can vary with compound exposure and insect host.

Keywords: behavior; chemical ecology; infection; management; insect pest (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/13/9/1802/pdf (application/pdf)
https://www.mdpi.com/2077-0472/13/9/1802/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:13:y:2023:i:9:p:1802-:d:1238537

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1802-:d:1238537