EconPapers    
Economics at your fingertips  
 

Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification: Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring

Cristhian A. Aguilera (), Carola Figueroa-Flores, Cristhian Aguilera and Cesar Navarrete
Additional contact information
Cristhian A. Aguilera: Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
Carola Figueroa-Flores: Departamento de Ciencias de la Computación y Tecnologías de la Información, Facultad de Ciencias Empresariales, Universidad del Bío-Bío, Chillan 3800708, Chile
Cristhian Aguilera: Departamento de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4051381, Chile
Cesar Navarrete: Departamento de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4051381, Chile

Agriculture, 2023, vol. 14, issue 1, 1-14

Abstract: In blueberry farming, accurately assessing maturity is critical to efficient harvesting. Deep Learning solutions, which are increasingly popular in this area, often undergo evaluation through metrics like mean average precision (mAP). However, these metrics may only partially capture the actual performance of the models, especially in settings with limited resources like those in agricultural drones or robots. To address this, our study evaluates Deep Learning models, such as YOLOv7, RT-DETR, and Mask-RCNN, for detecting and classifying blueberries. We perform these evaluations on both powerful computers and embedded systems. Using Type-Influence Detector Error (TIDE) analysis, we closely examine the accuracy of these models. Our research reveals that partial occlusions commonly cause errors, and optimizing these models for embedded devices can increase their speed without losing precision. This work improves the understanding of object detection models for blueberry detection and maturity estimation.

Keywords: blueberry detection; maturity estimation; edge computing; smart agriculture; computer vision; machine learning (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/1/18/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/1/18/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2023:i:1:p:18-:d:1305493

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:18-:d:1305493