EconPapers    
Economics at your fingertips  
 

Multi-Crop Navigation Line Extraction Based on Improved YOLO-v8 and Threshold-DBSCAN under Complex Agricultural Environments

Jiayou Shi, Yuhao Bai, Jun Zhou and Baohua Zhang ()
Additional contact information
Jiayou Shi: College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
Yuhao Bai: College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
Jun Zhou: College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
Baohua Zhang: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China

Agriculture, 2023, vol. 14, issue 1, 1-22

Abstract: Field crops are usually planted in rows, and accurate identification and extraction of crop row centerline is the key to realize autonomous navigation and safe operation of agricultural machinery. However, the diversity of crop species and morphology, as well as field noise such as weeds and light, often lead to poor crop detection in complex farming environments. In addition, the curvature of crop rows also poses a challenge to the safety of farm machinery during travel. In this study, a combined multi-crop row centerline extraction algorithm is proposed based on improved YOLOv8 (You Only Look Once-v8) model, threshold DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering, least squares method, and B-spline curves. For the detection of multiple crops, a DCGA-YOLOv8 model is developed by introducing deformable convolution and global attention mechanism (GAM) on the original YOLOv8 model. The introduction of deformable convolution can obtain more fine-grained spatial information and adapt to crops of different sizes and shapes, while the combination of GAM can pay more attention to the important feature areas of crops. The experimental results shown that the F1-score and mAP value of the DCGA-YOLOv8 model for Cabbage, Kohlrabi, and Rice are 96.4%, 97.1%, 95.9% and 98.9%, 99.2%, 99.1%, respectively, which has good generalization and robustness. A threshold-DBSCAN algorithm was proposed to implement clustering for each row of crops. The correct clustering rate for Cabbage, Kohlrabi and Rice reaches 98.9%, 97.9%, and 100%, respectively. And LSM and cubic B-spline curve methods were applied to fit straight and curved crop rows, respectively. In addition, this study constructed a risk optimization function for the wheel model to further improve the safety of agricultural machines operating between crop rows. This indicates that the proposed method can effectively realize the accurate recognition and extraction of navigation lines of different crops in complex farmland environment, and improve the safety and stability of visual navigation and field operation of agricultural machines.

Keywords: crop row detection; DCGA-YOLOv8 network; threshold DBSCAN clustering; B-spline curve method (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/1/45/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/1/45/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2023:i:1:p:45-:d:1308057

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:45-:d:1308057