EconPapers    
Economics at your fingertips  
 

Development and Evaluation of a Monodisperse Droplet-Generation System for Precision Herbicide Application

Minmin Wu, Mingxiong Ou, Yong Zhang, Weidong Jia (), Shiqun Dai, Ming Wang, Xiang Dong, Xiaowen Wang and Li Jiang
Additional contact information
Minmin Wu: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Mingxiong Ou: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Yong Zhang: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Weidong Jia: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Shiqun Dai: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Ming Wang: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Xiang Dong: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Xiaowen Wang: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Li Jiang: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

Agriculture, 2024, vol. 14, issue 11, 1-16

Abstract: Traditional methods of weed control during field management often result in herbicide waste. Precision herbicide application is crucial in agricultural production. This study presents a monodisperse droplet-generation system designed for precision herbicide application, capable of generating monodisperse droplets induced by an electric field. Droplet-generation experiments were conducted to investigate the effects of capillary tube outlet shape, liquid flow rate, and capillary tube size on the generation of charged droplets. A droplet diameter prediction model was established based on the system parameters. Experimental results indicated that as the applied voltage increased, the droplet diameter decreased, and the droplet-generation patterns transitioned sequentially from dripping, micro-dripping, to unstable dripping modes. In a weak electric field, capillaries with beveled outlets produced smaller droplets with more stable diameter distributions compared to those with blunt outlets. In a strong electric field, the smallest droplet diameter from blunt capillaries was 138.2 μm, whereas from beveled capillaries it was 198.7 μm. Within the design parameter range, droplet diameter was basically positively correlated with liquid flow rate and capillary tube size. By controlling the applied voltage, liquid flow rate, and capillary tube size, stable droplet generation could be achieved within a diameter range of 198.7–2520.8 μm, and the coefficient of variation of droplet diameter under the same working conditions was generally less than 6%. The monodisperse droplet-generation system developed in this study can effectively reduce herbicide usage and improve application efficiency.

Keywords: precision herbicide application; monodisperse droplet; droplet diameter (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/11/1885/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/11/1885/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:11:p:1885-:d:1505870

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1885-:d:1505870