An Attention-Based Spatial-Spectral Joint Network for Maize Hyperspectral Images Disease Detection
Jindai Liu,
Fengshuang Liu () and
Jun Fu ()
Additional contact information
Jindai Liu: College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
Fengshuang Liu: College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
Jun Fu: College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
Agriculture, 2024, vol. 14, issue 11, 1-22
Abstract:
Maize is susceptible to pest disease, and the production of maize would suffer a significant decline without precise early detection. Hyperspectral imaging is well-suited for the precise detection of diseases due to its ability to capture the internal chemical characteristics of vegetation. However, the abundance of redundant information in hyperspectral data poses challenges in extracting significant features. To overcome the above problems, in this study we proposed an attention-based spatial-spectral joint network model for hyperspectral detection of pest-infected maize. The model contains 3D and 2D convolutional layers that extract features from both spatial and spectral domains to improve the identification capability of hyperspectral images. Moreover, the model is embedded with an attention mechanism that improves feature representation by focusing on important spatial and spectral-wise information and enhances the feature extraction ability of the model. Experimental results demonstrate the effectiveness of the proposed model across different field scenarios, achieving overall accuracies (OAs) of 99.24% and 97.4% on close-up hyperspectral images and middle-shot hyperspectral images, respectively. Even under the condition of a lack of training data, the proposed model performs a superior performance relative to other models and achieves OAs of 98.29% and 92.18%. These results proved the validity of the proposed model, and it is accomplished efficiently for pest-infected maize detection. The proposed model is believed to have the potential to be applied to mobile devices such as field robots in order to monitor and detect infected maize automatically.
Keywords: maize; pest disease detection; machine learning; hyperspectral images; convolutional neural network; attention mechanism (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/14/11/1951/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/11/1951/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:11:p:1951-:d:1511517
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().