EconPapers    
Economics at your fingertips  
 

Dead Broiler Detection and Segmentation Using Transformer-Based Dual Stream Network

Gyu-Sung Ham and Kanghan Oh ()
Additional contact information
Gyu-Sung Ham: AI Convergence Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
Kanghan Oh: Department of Computer and Software Engineering, Wonkwang University, Iksan 54538, Republic of Korea

Agriculture, 2024, vol. 14, issue 11, 1-14

Abstract: Improving productivity in industrial farming is crucial for precision agriculture, particularly in the broiler breeding sector, where swift identification of dead broilers is vital for preventing disease outbreaks and minimizing financial losses. Traditionally, the detection process relies on manual identification by farmers, which is both labor-intensive and inefficient. Recent advances in computer vision and deep learning have resulted in promising automatic dead broiler detection systems. In this study, we present an automatic detection and segmentation system for dead broilers that uses transformer-based dual-stream networks. The proposed dual-stream method comprises two streams that reflect the segmentation and detection networks. In our approach, the detection network supplies location-based features of dead broilers to the segmentation network, aiding in the prevention of live broiler mis-segmentation. This integration allows for more accurate identification and segmentation of dead broilers within the farm environment. Additionally, we utilized the self-attention mechanism of the transformer to uncover high-level relationships among the features, thereby enhancing the overall accuracy and robustness. Experiments indicated that the proposed approach achieved an average IoU of 88% on the test set, indicating its strong detection capabilities and precise segmentation of dead broilers.

Keywords: dead broiler segmentation; CNN; deep learning; precision agriculture (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/11/2082/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/11/2082/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:11:p:2082-:d:1524274

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2082-:d:1524274