EconPapers    
Economics at your fingertips  
 

Antifungal Activity of Bacillus velezensis X3-2 Against Plant Pathogens and Biocontrol Effect on Potato Late Blight

Peixia Wei, Mengying Gao, Shuang Zhou, Guohui Liu, Pan Wang, Chunguang Liu, Fengshan Yang and Haiyan Fu ()
Additional contact information
Peixia Wei: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Mengying Gao: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Shuang Zhou: Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Scienses, Harbin 150027, China
Guohui Liu: Heilongjiang Agricultural Environment and Cultivated Land Protection Station, Harbin 150031, China
Pan Wang: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Chunguang Liu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Fengshan Yang: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Haiyan Fu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China

Agriculture, 2024, vol. 14, issue 12, 1-15

Abstract: Late blight of potato is caused by the pathogen Phytophthora infestans , which has been considered to be the most destructive disease affecting potato crops worldwide. In recent years, the use of antagonistic microorganisms to control potato late blight has become a green and environmentally friendly means of disease control, greatly reducing the use of chemical pesticides. To obtain antagonistic bacteria with a high biocontrol effect against potato late blight, a total of 16 antagonistic bacterial strains with an inhibition rate of more than 50% against P. infestans were screened from potato rhizosphere soil by double-culture method, among which the bacterial isolate (X3-2) had the strongest inhibitory activity against P. infestans , with an inhibition rate of 81.97 ± 4.81%, respectively, and a broad-spectrum inhibitory activity. The bacterial isolate (X3-2) was identified as Bacillus velezensis based on its 16S rDNA gene sequence and morphological as well as biochemical properties. The results of our in vitro experiments demonstrated that X3-2 was a potent inducer of resistance in potato tubers and leaflets against late blight. In greenhouse experiments, it was confirmed that the biological preparation X3-2 exhibits an anti-oomycete effect, demonstrating a significant control efficacy on potato late blight. Further analyses showed that the antagonistic substances of X3-2 were distributed both intracellularly and extracellularly. In addition, screening for plant-growth-promoting (PGP) traits showed that X3-2 has the ability to produce siderophores and secrete indole acetic acid (IAA). The findings from this research suggest that B. velezensis X3-2 exhibits promise as a biocontrol agent for managing late blight. In the future, the composition and mechanism of the action of its antimicrobial substances can be studied in depth, and field trials can be carried out to assess its actual prevention and control effects.

Keywords: antimicrobial properties; potato; Phytophthora infestans; Bacillus velezensis; biocontrol (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/12/2224/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/12/2224/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:12:p:2224-:d:1537308

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2224-:d:1537308