EconPapers    
Economics at your fingertips  
 

A Method for Calculating the Leaf Area of Pak Choi Based on an Improved Mask R-CNN

Fei Huang, Yanming Li (), Zixiang Liu, Liang Gong and Chengliang Liu
Additional contact information
Fei Huang: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Yanming Li: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Zixiang Liu: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Liang Gong: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Chengliang Liu: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Agriculture, 2024, vol. 14, issue 1, 1-18

Abstract: The leaf area of pak choi is a critical indicator of growth rate, nutrient absorption, and photosynthetic efficiency, and it is required to be precisely measured for an optimal agricultural output. Traditional methods often fail to deliver the necessary accuracy and efficiency. We propose a method for calculating the leaf area of pak choi based on an improved Mask R-CNN. We have enhanced Mask R-CNN by integrating an advanced attention mechanism and a two-layer fully convolutional network (FCN) into its segmentation branch. This integration significantly improves the model’s ability to detect and segment leaf edges with increased precision. By extracting the contours of reference objects, the conversion coefficient between the pixel area and the actual area is calculated. Using the mask segmentation output from the model, the area of each leaf is calculated. Experimental results demonstrate that the improved model achieves mean average precision (mAP) scores of 0.9136 and 0.9132 in detection and segmentation tasks, respectively, representing improvements of 1.01% and 1.02% over the original Mask R-CNN. The model demonstrates excellent recognition and segmentation capabilities for pak choi leaves. The error between the calculation result of the segmented leaf area and the actual measured area is less than 4.47%. These results indicate that the proposed method provides a reliable segmentation and prediction performance. It eliminates the need for detached leaf measurements, making it suitable for real-life leaf area measurement scenarios and providing valuable support for automated production technologies in plant factories.

Keywords: pak choi; instance segmentation; Mask R-CNN; leaf area (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/1/101/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/1/101/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:1:p:101-:d:1313984

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:1:p:101-:d:1313984