Design and Experiment of Adaptive Profiling Header Based on Multi-Body Dynamics–Discrete Element Method Coupling
Weijian Liu,
Shan Zeng and
Xuegeng Chen ()
Additional contact information
Weijian Liu: Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China
Shan Zeng: College of Engineering, South China Agricultural University, Guangzhou 510642, China
Xuegeng Chen: Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China
Agriculture, 2024, vol. 14, issue 1, 1-20
Abstract:
To promote the germination of rice panicles during the regeneration season, it is necessary to ensure a stubble height of 300–450 mm when mechanically harvesting the first-season rice. However, due to variations in the depth of the paddy soil and fluctuations in the height of the header during harvesting, maintaining the desired stubble height becomes challenging, resulting in a significant impact on the yield during the regeneration season. This study presents the design of an adaptive profiling header capable of adjusting the height and level of the header adaptively. Based on the theoretical analysis of the profiling mechanism, a quadratic regression orthogonal rotation combination experiment is designed. Considering the actual field conditions, the range of each factor is determined, and simulation experiments are conducted based on the MBD-DEM coupling to establish a mathematical regression model between each factor and indicator. In the case of the profiling wheel linkage length of 562 mm, profiling wheel width of 20 mm, and profiling wheel mass of 3.6 kg, the supporting force of the header on the profiling wheel would be greater than zero, the supporting force of soil on the profiling wheel and the depth of soil subsidence represent the smallest values, and the highest sensitivity and accuracy of the profiling wheel are achieved. Bench tests demonstrated that the header exerts a force on the profiling wheel, confirming the normal functioning of the profiling. The average magnitudes of forces exerted by the soil on the profiling wheel are obtained to be 31.98 N, 31.63 N, and 30.86 N, whereas the corresponding average soil subsidence depths are obtained as 3.4 mm, 5.6 mm, and 8.3 mm, aligning closely with the simulation values. The results indicate that the profiling mechanism achieves high accuracy in ground profiling and that the structural design is reasonable. By employing fuzzy PID control to adjust the height of the header, the average error in adjustment is obtained as 6.75 mm, while the average error in the horizontal adjustment is derived as 0.64°. The header adjustment is fast, offering high positioning accuracy, thereby meeting the harvesting requirements of the first season of ratooning rice.
Keywords: agricultural machinery; testing; ratooning rice; adaptive profiling header; MBD-DEM coupling (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/14/1/105/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/1/105/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:1:p:105-:d:1314935
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().