Trade-Off Strategy for Usage of Phosphorus Fertilizer in Calcareous Soil-Grown Winter Wheat: Yield, Phosphorus Use Efficiency, and Zinc Nutrition Response
Min Zhang,
Feng Shi,
Shiyu Peng,
Rushan Chai,
Liangliang Zhang,
Chaochun Zhang and
Laichao Luo ()
Additional contact information
Min Zhang: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Feng Shi: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Shiyu Peng: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Rushan Chai: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Liangliang Zhang: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Chaochun Zhang: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Laichao Luo: Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Agriculture, 2024, vol. 14, issue 3, 1-15
Abstract:
Although phosphorus (P) fertilizer application is widely used to improve production, irrational P application has a negative impact on the zinc (Zn) nutrition of cereal crops. Previous researchers observed and confirmed that P application decreases grain Zn concentrations and bioavailability in cereal crops. However, it remains unclear whether different P fertilizer types can alleviate the antagonism of P and Zn in the soil and grain and, thus, enhance the Zn nutritional level of cereal crops while maintaining production. Thus, a completely randomized pot experiment was conducted on winter wheat grown in two calcareous soils (lime concretion black soil and fluvo-aquic soil). Five P fertilizer types (single superphosphate, diammonium phosphate, fused calcium–magnesium phosphate, triple superphosphate, and ammonium polyphosphate, abbreviated, respectively, as SSP, DAP, FMP, TSP, and APP) were applied to each soil compared to no P fertilizer (CK). Plant and topsoil samples were collected during the flowering and maturity stages of winter wheat, and biomass, Zn concentrations in each organ, and grain phytic acid concentrations were analyzed. Grain yield was not affected by the application of different P fertilizer types to lime concretion black soil, while it was significantly increased by the application of TSP and APP to fluvo-aquic soil. The application of DAP and APP effectively promoted soil available Zn concentrations in both calcareous soils. In lime concretion black soil, the application of FMP significantly increased Zn remobilization to grains, while the application of DAP increased post-anthesis Zn uptake, thereby increasing grain Zn concentrations and its bioavailability. In fluvo-aquic soil, post-anthesis Zn remobilization and uptake were significantly increased by the application of TSP and APP, finally achieving higher grain Zn concentrations and Zn harvest index and effectively promoting grain Zn bioavailability. In conclusion, the rational application of DAP to wheat grown in lime concretion black soil and of TSP or APP to fluvo-aquic soil can achieve superior grain Zn nutrition quality while concurrently retaining high production and high P use efficiency, reducing micronutrient deficiency and further contributing to green agricultural development and human health.
Keywords: calcareous soil; P fertilizer types; soil available Zn; phytic acid; grain Zn concentration; Zn bioavailability (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/14/3/373/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/3/373/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:3:p:373-:d:1345735
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().