EconPapers    
Economics at your fingertips  
 

Nitrogen Addition Decreased Respiration and Heterotrophic Respiration but Increased Autotrophic Respiration in a Cabbage ( Brassica pekinensis Rupr) Experiment in the Northeast Plains

Xinming Jiang, Xu Yan, Shuyan Liu, Lili Fu, Xiaomei Gao and Dongyan Huang ()
Additional contact information
Xinming Jiang: The College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
Xu Yan: The College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
Shuyan Liu: Key Laboratory of Bionics Engineering, Ministry of Education, Jilin University, Changchun 130022, China
Lili Fu: Key Laboratory of Bionics Engineering, Ministry of Education, Jilin University, Changchun 130022, China
Xiaomei Gao: Key Laboratory of Bionics Engineering, Ministry of Education, Jilin University, Changchun 130022, China
Dongyan Huang: The College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China

Agriculture, 2024, vol. 14, issue 4, 1-14

Abstract: Farmland soil respiration ( Rs ) significantly impacts the global carbon (C) cycle. Although nitrogen (N) can promote crop growth and increase yields, its relationship with Rs and its constituents, including autotrophic respiration ( Ra ) and heterotrophic respiration ( Rh ), remains unclear. Therefore, a field study was carried out in a cabbage ( Brassica pekinensis Rupr) system to probe the impact of N addition on Rs , Ra , and Rh . Five levels of N addition, including 0 kg N hm −2 ·yr −1 (N0), 50 kg N hm −2 ·yr −1 (N50), 100 kg N hm −2 ·yr −1 (N100), 150 kg N hm −2 ·yr −1 (N150), and 200 kg N hm −2 ·yr −1 (N200), started in March 2022. The Rs ( Ra and Rh ) and soil samples were measured and collected twice a month. The findings revealed the following: (1) N fertilizer enhanced Ra while reducing Rs and Rh ; (2) soil temperature (ST), belowground net primary productivity (BNPP), soil inorganic N (SIN), and soil total C/total N (C/N) were the significant elements influencing Ra , and microbial biomass carbon (MBC), SIN, and microbial diversity (MD) were the primary factors influencing Rh ; (3) partial least squares-path models (PLS-PM) showed that ST and SIN directly impacted Rh , while ST and BNPP tangentially influenced Ra ; (4) 150 kg N hm −2 ·yr −1 was the ideal N addition rate for the cabbage in the region. In summary, the reactions of Ra and Rh to N fertilizer in the Northeast Plains are distinct. To comprehend the underlying processes of Rs , Ra , and Rh , further long-term trials involving various amounts of N addition are required, particularly concerning worsening N deposition.

Keywords: N addition; soil respiration; soil temperature; autotrophic respiration; heterotrophic respiration; random forest; PLS-PM (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/4/596/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/4/596/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:4:p:596-:d:1372495

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:596-:d:1372495