EconPapers    
Economics at your fingertips  
 

Design and Test of Disturbed Fertilizer Strip-Ejection Device with Vertical Pendulum Bar Based on Discrete Element Method

Lintao Chen, Xiangwu Deng (), Zhaoxiang Liu, Xiangwei Mou, Xu Ma and Rui Chen
Additional contact information
Lintao Chen: Department of Mechanical Engineering, Guangxi Normal University, Guilin 541004, China
Xiangwu Deng: College of Electronic Information Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
Zhaoxiang Liu: Department of Mechanical Engineering, Guangxi Normal University, Guilin 541004, China
Xiangwei Mou: Department of Mechanical Engineering, Guangxi Normal University, Guilin 541004, China
Xu Ma: College of Engineering, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
Rui Chen: Department of Mechanical Engineering, Guangxi Normal University, Guilin 541004, China

Agriculture, 2024, vol. 14, issue 4, 1-31

Abstract: Fertilizer can improve the yield of crops per unit area, and uniform fertilizer discharge can improve the fertilizer utilization rate. Therefore, it is meaningful to improve the performance of fertilizer-discharge devices in order to improve the modernization level of crop field fertilizer management. To address the problems of operational smoothness, stability and poor uniformity of fertilizer discharge, and other difficult problems encountered with strip fertilizer-discharge devices, this study designs a disturbed fertilizer strip-discharge device with a vertical pendulum. The main factors affecting the performance of fertilizer discharge were the wedge angle of the push-disturbing main pendulum bar (PMPB), the inclination angle of the aided-stirring pendulum pick (APP), the flow gap of the pendulum bar (FGPB), and the operation frequency of the swing-rod combination (SRC). The discrete element method (DEM) was used to establish a simulation model of the fertilizer device to explore the influence of the main factors on the performance of fertilizer discharge, with the coefficient of variation (CV) of fertilizer discharge uniformity and fertilizer discharge accuracy (FDA) used as the evaluation indices. The results show that the factors affecting the CV of fertilizer discharge uniformity and FDA were, in order of priority, the operation frequency of the SRC, the FGPB, the wedge angle of the PMPB, and the inclination angle of the APP. The optimal parameters after rounding were as follows: the wedge angle of the PMPB was 45°, the inclination angle of the APP was 46°, the operation frequency of the SRC was 188 times/min, and the FGPB was 4.5 mm. At this point, the model predicted that the CV of fertilizer discharge uniformity would be 10.53%, and that the FDA would be 3.19%. Using the optimal parameters for bench test verification, it was found that the wedge angle of the PMPB was 45°, the inclination angle of the APP was 46°, the operation frequency of the SRC was 188 times/min, the FGPB was 4.5 mm, the CV of the uniformity of the fertilizer discharge was 11.06%, and the FDA was 3.51%. In the test, the fertilizer-discharge device was stable and had good adaptability to different fertilizers. The results of this study can provide a theoretical reference for the development of precision strip-fertilizer application devices.

Keywords: granular fertilizers; strip-fertilizer application; fertilizer discharge; perturbation; vertical pendulum bar (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/4/635/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/4/635/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:4:p:635-:d:1379605

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:635-:d:1379605