EconPapers    
Economics at your fingertips  
 

Vibration Response of Metal Plate and Shell Structure under Multi-Source Excitation with Welding and Bolt Connection

Zhexuan Ding, Zhong Tang (), Ben Zhang and Zhao Ding
Additional contact information
Zhexuan Ding: School of Electrical Information Engineering, Jiangsu University, Zhenjiang 212013, China
Zhong Tang: College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Ben Zhang: College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Zhao Ding: Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua 321017, China

Agriculture, 2024, vol. 14, issue 6, 1-22

Abstract: There are many excitation sources and complex vibration environments in combine harvesters. The coupling and superposition of different vibration signals on the plate and shell seriously affect the working parts of the body. This also reduces the reliability of the whole machine. At present, domestic and foreign research on existing harvesters mainly focuses on harvesting performance, with less research on vibration characteristics. Therefore, in this paper, the vibration response of the metal plate–shell under the two connection modes of bolt connection and welding is studied, in order to optimize the design and structure of the plate–shell structure of the combine harvester and improve the overall performance. First, the welded and bolted plates are numerically modeled using Hypermesh pre-processing functions. Then, the boundary conditions are simulated by continuous variable stiffness elastic constraint experiments. Finally, the intrinsic vibration dynamic model of the four-sided simply supported plate and four-sided solidly supported plate is established using the modal superposition method. By analyzing the modal frequencies and vibration patterns, the following results are obtained. The connection method between the plate and the frame has a significant impact on the inherent vibration characteristics of the plate. The bolt connection will make the plate’s intrinsic vibration frequency higher than that of the welding method, but the effect on the plate’s intrinsic vibration pattern is more minor. At the same time, in order to verify the accuracy of the model, the actual modal vibration patterns and frequencies of the same proportion of plates in the modal test are compared with the results of modal vibration patterns and frequencies obtained by Ansys. The errors of the two dynamic model analytical methods are within 1% and 3%, respectively. This result verifies the accuracy of the dynamic model of the metal plate and shell structure under different connection methods.

Keywords: plate and shell structures; bolted links; welded links; modal tests; vibration characteristics (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/6/816/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/6/816/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:6:p:816-:d:1400761

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:816-:d:1400761