EconPapers    
Economics at your fingertips  
 

Oat Threshing Damage and Its Effect on Nutritional Components

Yun Liu, Peichen Xin, Jinyan Sun and Decong Zheng ()
Additional contact information
Yun Liu: College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China
Peichen Xin: College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China
Jinyan Sun: College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China
Decong Zheng: College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China

Agriculture, 2024, vol. 14, issue 6, 1-13

Abstract: Mechanical threshing can cause damage to oats, and the nutritional quality of the damaged kernels easily changes during storage. The current research on oats with regard to threshing damage and nutritional quality falls into two separate research areas, but they are inextricably linked. It is necessary to combine these two types of studies. In order to explore the damage mechanism of oat threshing and its effect on the nutritional components, a three-dimensional model of oat–nail-tooth impact was established, and a finite element analysis of the dynamic impact process was performed using LS-DYNA. The changes in the von Mises stress, contact force, energy, critical velocity, and damage characteristics during impact on different surfaces of the kernel were analyzed. A threshing test was carried out, and the kernels were classified according to their different damage types. The differences in the nutrient compositions and contents of oats with different damage types were analyzed by means of near-infrared spectroscopy and physicochemical testing. The results showed that the von Mises stress and contact force tended to first increase and then decrease during impact. When the impact velocity was 12 m/s, for the top, bottom, front, back, and left sides of the oat impacted by the nail tooth, the maximum von Mises stresses were 10.05, 10.46, 8.60, 9.28, and 8.49 MPa, respectively. The maximum contact forces were 25.09, 18.57, 34.29, 38.37, and 35.19 N, respectively. The critical velocities of impact damage were 13.38, 13.10, 13.40, 14.64, and 16.00 m/s, respectively. The threshing damage could be divided into four typical types: transverse fracture, bottom breakage, side fracture, and back crack. The chemical compositions of oat kernels with different damage types were basically the same, but their nutrient contents were different. These results provide a theoretical basis for optimizing oat threshing devices, reducing threshing damage, and improving oat quality.

Keywords: oat; threshing damage; finite element analysis; nutritional component (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/6/842/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/6/842/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:6:p:842-:d:1403552

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:842-:d:1403552