EconPapers    
Economics at your fingertips  
 

Deposition of Water and Emulsion Hollow Droplets on Hydrophilic and Hydrophobic Surfaces

Chen Gong, Feng Jia and Can Kang ()
Additional contact information
Chen Gong: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Feng Jia: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Can Kang: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China

Agriculture, 2024, vol. 14, issue 6, 1-15

Abstract: The deposition of spray droplets is a hot topic in the field of plant protection. The air-induction nozzle, which is commonly used in agricultural spray, can produce droplets containing bubbles. However, few studies have addressed the deposition of hollow droplets. In the present study, we used experimental and numerical methods to investigate the deposition of hollow droplets. Three kinds of liquid—water, oil-based emulsion and organosilicon—were used to produce hollow droplets, and the diameter of droplets varied from 3 to 4.5 mm. Both hydrophilic and hydrophobic surfaces were selected as deposition targets. The results show that the deposition of hollow droplets can generate a central jet, which is similar to the Wortington jet. High deposition velocity and the large bubble volume were responsible for the large attainable height of the central jet. On the hydrophilic surface, for water hollow droplets with Weber number ( We ) ranging from 350 to 391, the central jet began to break up as the bubble fraction of the hollow droplet reached 0.15. Based on the numerical results, it was found that the internal pressure difference between the bottom liquid and the air cavity leads to the formation of the central jet. The bubble volume and impact velocity were both positively correlated with the internal pressure difference. The oil-based emulsion promoted the adherence of the hollow droplet by lubricating the hydrophobic surface. The oil-based emulsion hollow droplets shifted from rebounding to adhering on the hydrophobic surface as the emulsion concentration reached 0.4%.

Keywords: hollow droplet; central jet; droplet deposition; hydrophilic and hydrophobic surface; CFD; oil-based emulsion (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/6/960/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/6/960/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:6:p:960-:d:1417990

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:960-:d:1417990