EconPapers    
Economics at your fingertips  
 

Design and Simulation of a Combined Trencher for Transverse Sugarcane Planter

Biao Zhang (), Xinsan Yang and Yingying Zhu
Additional contact information
Biao Zhang: College of Mechanical Engineering, Guangxi University, Nanning 530004, China
Xinsan Yang: College of Mechanical Engineering, Guangxi University, Nanning 530004, China
Yingying Zhu: College of Mechanical Engineering, Guangxi University, Nanning 530004, China

Agriculture, 2024, vol. 14, issue 8, 1-17

Abstract: The trencher design of the pre-cut transverse sugarcane planter is the basis for realizing deep planting and shallow burial. Aimed at the problems of insufficient seeding space provided by furrows and high resistance to trenching, a structural configuration of a combined trencher suitable for transverse cane planting agronomy was proposed to improve the stability, simplicity, and efficiency of trenching. The collaborative operations of components such as the soil lifting of the leak-proof plow, the soil fragmentation and throwing of the double-disc rotary tiller, the rebound of the fender, the lateral diversion of the furrowing plow, and the motion control of the double rocker arms were comprehensively utilized. The trenching principle of using double-sided guards to block soil backfilling to form a seeding space was applied, as well as pre-side diversion to reduce the forward resistance of plow surfaces. The simulation of the trenching process showed that the combined trencher was available in terms of soil particle transfer and dynamic space-forming capabilities, and the stress distribution of the advancing plow surface was analyzed. Moreover, based on the minimum resistance characteristics, the optimal spacing between the rotary tiller and the furrowing plow and the blade arrangement mode were configured, and the structural parameters of the furrowing plow were optimized to include a soil penetration angle of 20°, an oblique cutting angle of 75°, and a curvature radius of 280 mm. Field experiments have proven that the soil entry movement trajectory, the length and width of the accessible seed placement space, and the average planting depth of cane seeds could all achieve respective design anticipations of the combined trencher. The measured trenching resistance was 7609.7 N, with an error of 22.2% from the predicted value under the same configuration.

Keywords: sugarcane planter; transverse seeding; combined trencher; furrow depth; trenching resistance (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/8/1416/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/8/1416/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:8:p:1416-:d:1460602

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1416-:d:1460602