EconPapers    
Economics at your fingertips  
 

Soil Traits and Grapevine Rootstock Genotypes Modulate Arbuscular Mycorrhizal Rate and Species in a Mediterranean Environment

Alessia Catalani, Elena Brunori, Gabriele Chilosi (), Alessandra Bernardini, Silvia Vanino, Melania Migliore, Roberta Farina and Rita Biasi
Additional contact information
Alessia Catalani: Department for Innovation in Biological, Agrifood and Forest Systems (DIBAF), via S.Camillo de Lellis, University of Tuscia, 01100 Viterbo, Italy
Elena Brunori: Department for Innovation in Biological, Agrifood and Forest Systems (DIBAF), via S.Camillo de Lellis, University of Tuscia, 01100 Viterbo, Italy
Gabriele Chilosi: Department for Innovation in Biological, Agrifood and Forest Systems (DIBAF), via S.Camillo de Lellis, University of Tuscia, 01100 Viterbo, Italy
Alessandra Bernardini: Department for Innovation in Biological, Agrifood and Forest Systems (DIBAF), via S.Camillo de Lellis, University of Tuscia, 01100 Viterbo, Italy
Silvia Vanino: CREA Research Centre for Agriculture and Environment, via della Navicella 4, 00184 Rome, Italy
Melania Migliore: CREA Research Centre for Agriculture and Environment, via della Navicella 4, 00184 Rome, Italy
Roberta Farina: CREA Research Centre for Agriculture and Environment, via della Navicella 4, 00184 Rome, Italy
Rita Biasi: Department for Innovation in Biological, Agrifood and Forest Systems (DIBAF), via S.Camillo de Lellis, University of Tuscia, 01100 Viterbo, Italy

Agriculture, 2024, vol. 14, issue 8, 1-18

Abstract: The soil microbiota is a key component of agroecosystems, and understanding its traits is crucial for effective agronomic management. Among beneficial microorganisms, arbuscular mycorrhizal fungi (AMFs) are mutually associated with grapevine ( Vitis vinifera L.), enhancing the ability of this cropping system to adapt to soil conditions and bolstering its resistance and resilience against abiotic stresses, particularly drought, by promoting root growth and enhancing the roots’ absorption surface. The objective of this on-field study was to determine AMF species richness and diversity along with their relation to soil chemical, physical, and biological characteristics in two adjacent organic vineyards in Central Italy. The two tested vineyards of the autochthonous cv. Aleatico differed by the presence of grafted ( Vitis berlandieri × V. riparia rootstock; AL-420) or own-rooted (ungrafted V. vinifera L.; AL-ORV) vines. To this aim, soil and root samples were collected and geo-referenced. Analysis of the AMF species colonizing roots of both AL-ORV and AL-420 revealed the presence of four species: Scutellospora alterata , Paraglomus laccatum , Acaulospora laevis , and A. baetica , with S. alterata being the most frequent. Mycorrhization parameters were higher in the roots of grafted plants compared to ungrafted ones. A high beta-glucosidase (BG):N-acetylglusosaminidase (NAG) ratio in two tested vineyards indicated that microbes utilized more cellulose than chitin and peptidoglycan as dominant C resources. A negative correlation between mycorrhization rate (MyCP) and BG was observed, likely because AMFs form mutualistic relationships with plants, depending on the host plant for carbon. Results revealed a positive correlation between the degree of mycorrhizal association and the species involved, with the presence of copper and nickel among metals. Negative correlations were found concerning soil clay content along with beta-glucosidase. In conclusion, the grapevine root system was characterized by a differential symbiotic relationship with AMF species, whose development is influenced by the root genotype, soil texture, and biochemistry. Specifically, the increased frequency of AMFs in relation to copper content strengthens the evidence of their role in maintaining a vine’s production capacity in the event of soil contamination by this element.

Keywords: autochthonous grapevine varieties; adaptation strategies; organic farming; soil fertility; soil enzymes; soil metal contamination (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/8/1425/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/8/1425/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:8:p:1425-:d:1461504

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1425-:d:1461504