EconPapers    
Economics at your fingertips  
 

Regional Differences, Dynamic Evolution, and Convergence of Global Agricultural Energy Efficiency

Ting Wang (), Jing Wu and Jianghua Liu
Additional contact information
Ting Wang: School of Economics, Hangzhou Normal University, Hangzhou 311121, China
Jing Wu: School of Economics, Hangzhou Normal University, Hangzhou 311121, China
Jianghua Liu: Institute of Finance and Economics Research, School of Urban and Regional Science, Shanghai University of Finance and Economics, Shanghai 200433, China

Agriculture, 2024, vol. 14, issue 8, 1-29

Abstract: Understanding the regional disparities, dynamic evolution, and convergence–divergence characteristics of global agricultural energy efficiency is crucial for enhancing agricultural energy efficiency, ensuring food security, and responding to global green development trends. This paper utilizes 2002–2021 panel data from 144 countries globally, employing the epsilon-based measure–global Malmquist–Luenberger (EBM-GML) model to estimate agricultural energy efficiency, considering unexpected output. The Dagum Gini coefficient, kernel density estimation, spatial Markov matrix, and spatial convergence model are employed to explain the spatial patterns and evolving trends of global and regional agricultural energy efficiency at three levels: regional disparities, dynamic evolution, and convergence. The results indicate significant spatial heterogeneity in global agricultural energy efficiency, with Europe exhibiting the highest efficiency, followed by Asia and the Americas, while Oceania and Africa demonstrate the lowest efficiency. Agricultural energy efficiency globally and in each region continues to improve, with increasing regional disparities, and difficulties in grade transitions in agricultural energy efficiency across regions. Each region exhibits β-convergence characteristics, but the convergence rates vary, and various factors influence growth rates of agricultural energy efficiency differently across regions. Therefore, countries should tailor their strategies based on local conditions, considering their own resource endowments and developmental stages, and strengthen international exchanges and cooperation.

Keywords: agricultural energy efficiency; regional disparities; dynamic evolution; convergence–divergence (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/8/1429/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/8/1429/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:8:p:1429-:d:1461646

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1429-:d:1461646