Spatiotemporal Dynamics and Evolution of Grain Cropping Patterns in Northeast China: Insights from Remote Sensing and Spatial Overlay Analysis
Guoming Du (),
Le Han,
Longcheng Yao and
Bonoua Faye
Additional contact information
Guoming Du: School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China
Le Han: School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China
Longcheng Yao: Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
Bonoua Faye: School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China
Agriculture, 2024, vol. 14, issue 9, 1-20
Abstract:
Understanding the spatiotemporal patterns and driving mechanisms of cropping patterns’ evolution tailored to local conditions is crucial for the effective allocation of black soil in northeast China and the advancement of agricultural development. This study utilized the Google Earth Engine platform to extract the spatial distribution data of major grain crops in northeast China for the year 2022. Using crop classification data from 2000 to 2022, the spatial overlay analysis method identified cropping pattern types based on spatial and temporal changes. The primary cropping patterns identified were continuous maize cropping, maize–soybean rotation, mixed cropping, and continuous soybean cropping. Simultaneously, this research constructed three distinct crop periods: Period I (2000–2002), Period II (2010–2012), and Period III (2020–2022). Over three periods, these patterns covered 94.73%, 88.76%, and 86.39% of the area, respectively. The evolution of the dominant cropping pattern from Period I to Period II involved the transition from continuous soybean cropping to continuous maize cropping, while from Period II to Period III, the main shift was from continuous maize cropping to maize–soybean mixed cropping. From a spatial perspective, since Period I, maize has increasingly replaced soybean as the dominant crop, with continuous maize cropping expanding northward and continuous soybean cropping contracting. The maize–soybean rotation area also migrated northward, particularly in the core area of the Songnen Plain, evolving mostly into continuous maize cropping. Maize cropping areas exhibited significant regional characteristics, being densely distributed in the Sanjiang Plain and Liaohe Plain, and along major tributaries in northeast China. Consequently, the interplay of the natural environment, economic policies, and agricultural technologies drove these changes. The findings offer valuable insights for optimizing cropping patterns and developing rotation systems in northeast China.
Keywords: remote sensing; cropping patterns; spatial overlay analysis; spatiotemporal dynamics and evolution; northeast China; black soil (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2077-0472/14/9/1443/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/9/1443/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:9:p:1443-:d:1463308
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().