EconPapers    
Economics at your fingertips  
 

Long-Term Manuring Enhanced Compositional Stability of Glomalin-Related Soil Proteins through Arbuscular Mycorrhizal Fungi Regulation

Hongbo Yang, Zejiang Cai, Caroline De Clerck, Jeroen Meersmans, Gilles Colinet and Wenju Zhang ()
Additional contact information
Hongbo Yang: Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
Zejiang Cai: Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
Caroline De Clerck: Terra Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
Jeroen Meersmans: Terra Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
Gilles Colinet: Terra Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
Wenju Zhang: Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China

Agriculture, 2024, vol. 14, issue 9, 1-14

Abstract: Glomalin-related soil proteins (GRSP) play a crucial role in strengthening soil structure and increasing carbon (C) storage. However, the chemical stability of GRSP and related arbuscular mycorrhizal fungi (AMF) community response to fertilization remains unclear. This study investigated C and nitrogen (N) contents, three-dimensional fluorescence characteristics in GRSP, and AMF properties based on a field experiment that was subjected to 29 years of various fertilizations. The experiment included treatments with no fertilizer (CK), chemical fertilizer (NPK), manure (M), and manure combined with NPK (NPKM) treatments. Results showed that GRSP contained 37–49% C and 6–9% N, respectively. Compared with CK and NPK, the C and N proportions in GRSP significantly increased under M and NPKM. Using the parallel factor model, four fluorescent components of GRSP were identified: one fulvic acid-like component (C2), one tyrosine-like component (C4), and two humic acid-like components (C1, C3). Under M and NPKM, the fluorescent intensity of C2 and C4 decreased, while the humification index (HIX) increased relative to CK and NPK, indicating that organic fertilization could enhance the stability of GRSP. The C and N proportion in GRSP positively associated with soil organic C (SOC), total N (TN), available phosphorus (AP), AMF biomass, and diversity, while C2 and C4 showed negative associations. Structural equation modeling further revealed that manure-induced changes in pH, SOC, TN, and AP increased AMF biomass and diversity, thereby altering GRSP composition and stability. This study provides valuable insights into the compositional traits of GRSP, contributing to sustainable soil management and C sequestration in agroecosystems.

Keywords: long-term fertilization; soil physicochemical properties; glomalin-related soil proteins; arbuscular mycorrhizal fungi; three-dimensional fluorescence (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/9/1510/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/9/1510/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:9:p:1510-:d:1469999

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1510-:d:1469999