EconPapers    
Economics at your fingertips  
 

Gini Coefficient-Based Feature Learning for Unsupervised Cross-Domain Classification with Compact Polarimetric SAR Data

Xianyu Guo, Junjun Yin (), Kun Li and Jian Yang
Additional contact information
Xianyu Guo: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
Junjun Yin: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
Kun Li: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Jian Yang: Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Agriculture, 2024, vol. 14, issue 9, 1-30

Abstract: Remote sensing image classification usually needs many labeled samples so that the target nature can be fully described. For synthetic aperture radar (SAR) images, variations of the target scattering always happen to some extent due to the imaging geometry, weather conditions, and system parameters. Therefore, labeled samples in one image could not be suitable to represent the same target in other images. The domain distribution shift of different images reduces the reusability of the labeled samples. Thus, exploring cross-domain interpretation methods is of great potential for SAR images to improve the reuse rate of existing labels from historical images. In this study, an unsupervised cross-domain classification method is proposed that utilizes the Gini coefficient to rank the robust and stable polarimetric features in both the source and target domains (GRFST) such that an unsupervised domain adaptation (UDA) can be achieved. This method selects the optimal features from both the source and target domains to alleviate the domain distribution shift. Both fully polarimetric (FP) and compact polarimetric (CP) SAR features are explored for crop-domain terrain type classification. Specifically, the CP mode refers to the hybrid dual-pol mode with an arbitrary transmitting ellipse wave. This is the first attempt in the open literature to investigate the representing abilities of different CP modes for cross-domain terrain classification. Experiments are conducted from four aspects to demonstrate the performance of CP modes for cross-data, cross-scene, and cross-crop type classification. Results show that the GRFST-UDA method yields a classification accuracy of 2% to 12% higher than the traditional UDA methods. The degree of scene similarity has a certain impact on the accuracy of cross-domain crop classification. It was also found that when both the FP and circular CP SAR data are used, stable, promising results can be achieved.

Keywords: cross-domain classification; domain adaptation; compact polarimetric SAR; cross-crop type classification (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/14/9/1511/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/9/1511/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:9:p:1511-:d:1470247

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1511-:d:1470247