Functional Characteristics and Cellulose Degradation Genes of the Microbial Community in Soils with Different Initial pH Values
Li Jiang,
Boyan Xu and
Qi Wang ()
Additional contact information
Li Jiang: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Boyan Xu: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
Qi Wang: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
Agriculture, 2025, vol. 15, issue 10, 1-18
Abstract:
Soil pH critically regulates microbial community structure and activity, thereby influencing carbon transformation processes in terrestrial ecosystems. However, the mechanisms underlying pH-mediated shifts in microbial metabolic functions and cellulose-degrading functional genes remain poorly understood. This study investigated the responses of bacterial communities, metabolic profiles, and the abundance of cellobiohydrolase I (cbhI) and glycoside hydrolase family 48 (GH48) genes to varying pH levels in fluvo-aquic and red soils. High-throughput sequencing, PICRUSt-based metabolic prediction, and quantitative PCR were employed to analyze microbial composition, functional traits, and gene dynamics. Network analysis clarified linkages between functional genes, pathways, and taxa. The results revealed that elevated pH significantly increased CO 2 emissions and dissolved organic carbon (DOC) content in both soils. Dominant taxa, including Alphaproteobacteria, Bacteroidetes, Xanthomonadaceae, and Mycoplasma, exhibited pH-dependent enrichment. Metabolic predictions indicated that pH positively influenced genes linked to biodegradation and xenobiotic metabolism in fluvo-aquic soil but suppressed energy-metabolism-related genes. Contrastingly, in red soil, cbhI and GH48 gene abundance declined with rising pH, suggesting that acidic conditions favor cellulolytic activity. Network analysis identified strong positive correlations between CO 2 emissions and Caulobacteraceae, while cbhI and GH48 genes were closely associated with taxa such as Xanthomonadaceae, Comamonadaceae, and Micromonosporaceae, which drive organic matter decomposition. These findings underscore pH as a pivotal regulator of microbial community structure and functional gene expression, with soil-specific responses highlighting the need for tailored strategies to optimize carbon cycling and sequestration in agricultural ecosystems.
Keywords: soil pH; metabolic function; microbial community; cellulose degradation; functional genes; network analysis (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/10/1068/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/10/1068/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:10:p:1068-:d:1656588
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().