EconPapers    
Economics at your fingertips  
 

Optimization of Coverage Path Planning for Agricultural Drones in Weed-Infested Fields Using Semantic Segmentation

Fabian Andres Lara-Molina ()
Additional contact information
Fabian Andres Lara-Molina: Department of Mechanical Engineering, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil

Agriculture, 2025, vol. 15, issue 12, 1-24

Abstract: The application of drones has contributed to automated herbicide spraying in the context of precision agriculture. Although drone technology is mature, the widespread application of agricultural drones and their numerous advantages still demand improvements in battery endurance during flight missions in agricultural operations. This issue has been addressed by optimizing the path planning to minimize the time of the route and, therefore, the energy consumption. In this direction, a novel framework for autonomous drone-based herbicide applications that integrates deep learning-based semantic segmentation and coverage path optimization is proposed. The methodology involves computer vision for path planning optimization. First, semantic segmentation is performed using a DeepLab v3+ convolutional neural network to identify and classify regions containing weeds based on aerial imagery. Then, a coverage path planning strategy is applied to generate efficient spray routes over each weed-infested area, represented as convex polygons, while accounting for the drone’s refueling constraints. The results demonstrate the effectiveness of the proposed approach for optimizing coverage paths in weed-infested sugarcane fields. By integrating semantic segmentation with clustering and path optimization techniques, it was possible to accurately localize weed patches and compute an efficient trajectory for UAV navigation. The GA-based solution to the Traveling Salesman Problem With Refueling (TSPWR) yielded a near-optimal visitation sequence that minimizes the energy demand. The total coverage path ensured complete inspection of the weed-infected areas, thereby enhancing operational efficiency. For the sugar crop considered in this contribution, the time to cover the area was reduced by 66.3% using the proposed approach because only the weed-infested area was considered for herbicide spraying. Validation of the proposed methodology using real-world agricultural datasets shows promising results in the context of precision agriculture to improve the efficiency of herbicide or fertilizer application in terms of herbicide waste reduction, lower operational costs, better crop health, and sustainability.

Keywords: coverage path planing; unmanned aerial vehicle; weed detection; drone trajectory optimization; computer vision (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/12/1262/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/12/1262/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:12:p:1262-:d:1676608

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-28
Handle: RePEc:gam:jagris:v:15:y:2025:i:12:p:1262-:d:1676608