Hyperspectral Imaging for Non-Destructive Moisture Prediction in Oat Seeds
Peng Zhang and
Jiangping Liu ()
Additional contact information
Peng Zhang: College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Jiangping Liu: College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Agriculture, 2025, vol. 15, issue 13, 1-21
Abstract:
Oat is a highly nutritious cereal crop, and the moisture content of its seeds plays a vital role in cultivation management, storage preservation, and quality control. To enable efficient and non-destructive prediction of this key quality parameter, this study presents a modeling framework integrating hyperspectral imaging (HSI) technology with a dual-optimization machine learning strategy. Seven spectral preprocessing techniques—standard normal variate (SNV), multiplicative scatter correction (MSC), first derivative (FD), second derivative (SD), and combinations such as SNV + FD, SNV + SD, and SNV + MSC—were systematically evaluated. Among them, SNV combined with FD was identified as the optimal preprocessing scheme, effectively enhancing spectral feature expression. To further refine the predictive model, three feature selection methods—successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and principal component analysis (PCA)—were assessed. PCA exhibited superior performance in information compression and modeling stability. Subsequently, a dual-optimized neural network model, termed Bayes-ASFSSA-BP, was developed by incorporating Bayesian optimization and the Adaptive Spiral Flight Sparrow Search Algorithm (ASFSSA). Bayesian optimization was used for global tuning of network structural parameters, while ASFSSA was applied to fine-tune the initial weights and thresholds, improving convergence efficiency and predictive accuracy. The proposed Bayes-ASFSSA-BP model achieved determination coefficients (R 2 ) of 0.982 and 0.963, and root mean square errors (RMSEs) of 0.173 and 0.188 on the training and test sets, respectively. The corresponding mean absolute error (MAE) on the test set was 0.170, indicating excellent average prediction accuracy. These results significantly outperformed benchmark models such as SSA-BP, ASFSSA-BP, and Bayes-BP. Compared to the conventional BP model, the proposed approach increased the test R 2 by 0.046 and reduced the RMSE by 0.157. Moreover, the model produced the narrowest 95% confidence intervals for test set performance (Rp 2 : [0.961, 0.971]; RMSE: [0.185, 0.193]), demonstrating outstanding robustness and generalization capability. Although the model incurred a slightly higher computational cost (480.9 s), the accuracy gain was deemed worthwhile. In conclusion, the proposed Bayes-ASFSSA-BP framework shows strong potential for accurate and stable non-destructive prediction of oat seed moisture content. This work provides a practical and efficient solution for quality assessment in agricultural products and highlights the promise of integrating Bayesian optimization with ASFSSA in modeling high-dimensional spectral data.
Keywords: hyperspectral imaging; oat seeds; moisture prediction; Bayes-ASFSSA-BP; feature selection; spectral preprocessing; non-destructive detection (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/13/1341/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/13/1341/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:13:p:1341-:d:1684880
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().