Mechanization and Maize Productivity in Tanzania’s Ruvuma Region: A Python-Based Analysis on Adoption and Yield Impact
James Jackson Majebele,
Minli Yang (),
Muhammad Mateen and
Abreham Arebe Tola
Additional contact information
James Jackson Majebele: College of Engineering, China Agricultural University, Beijing 100083, China
Minli Yang: College of Engineering, China Agricultural University, Beijing 100083, China
Muhammad Mateen: College of Engineering, China Agricultural University, Beijing 100083, China
Abreham Arebe Tola: College of Engineering, China Agricultural University, Beijing 100083, China
Agriculture, 2025, vol. 15, issue 13, 1-13
Abstract:
This study investigates the influence of agricultural mechanization on maize productivity in Tanzania’s Ruvuma region, a major maize-producing area vital to national food security. It addresses gaps in understanding the cumulative effects of mechanization across the maize production cycle and identifies region-specific barriers to adoption among smallholder farmers. Focusing on five key stages—land preparation, planting, plant protection, harvesting, and drying—this research evaluated mechanization uptake at each stage and its relationship with yield disparities. Statistical analyses using Python libraries included regression modeling, ANOVA, and hypothesis testing to quantify mechanization–yield relationships, controlling for farm size and socioeconomic factors, revealing a strong positive correlation between mechanization and maize yields (r = 0.86; p < 0.01). Mechanized land preparation, planting, and plant protection significantly boosted productivity (β = 0.75–0.35; p < 0.001). However, harvesting and drying mechanization showed negligible impacts ( p > 0.05), likely due to limited adoption by smallholders combined with statistical constraints arising from the small sample size of large-scale farms (n = 20). Large-scale farms achieved 45% higher yields than smallholders (2.9 vs. 2.0 tons/acre; p < 0.001), reflecting systemic inequities in access. These inequities are underscored by the barriers faced by smallholders, who constitute 70% of farmers yet encounter challenges, including high equipment costs, limited credit access, and insufficient technical knowledge. This study advances innovation diffusion theory by demonstrating how inequitable resource access perpetuates low mechanization uptake in smallholder systems. It underscores the need for context-specific, equity-focused interventions. These include cooperative mechanization models for high-impact stages (land preparation and planting); farmer training programs; and policy measures such as targeted subsidies for harvesting equipment and expanded rural credit systems. Public–private partnerships could democratize mechanization access, bridging yield gaps and enhancing food security. These findings advocate for strategies prioritizing smallholder inclusion to sustainably improve Tanzania’s maize productivity.
Keywords: agricultural mechanization; maize productivity; smallholder farmers; yield gaps; adoption constraints; innovation diffusion theory (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/13/1412/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/13/1412/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:13:p:1412-:d:1691226
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().