EconPapers    
Economics at your fingertips  
 

The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression

Ivan Oyege and Maruthi Sridhar Balaji Bhaskar ()
Additional contact information
Ivan Oyege: Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
Maruthi Sridhar Balaji Bhaskar: Department of Earth and Environment, Florida International University, Miami, FL 33199, USA

Agriculture, 2025, vol. 15, issue 13, 1-17

Abstract: Integrating organic soil amendments such as vermicompost (VC) and vermicompost tea (VCT) in agriculture has received increasing attention as a sustainable strategy to improve soil fertility, enhance plant growth, and suppress pest infestations. This study aimed to evaluate the effects of varying concentrations of VCT (10%, 20%, and 40%), alone and in combination with VC (2.47 ton/ha), on the development and yield of corn ( Zea mays ), and suppression of fall armyworm (FAW, Spodoptera frugiperda ) infestation. The experiment was conducted in seven raised beds with seven treatments: V0 (control), VCT10, VCT20, VCT40, VC1 + VCT10, VC1 + VCT20, and VC1 + VCT40. Six weekly applications of VCT were applied starting at the V2 stage, and soil and plant nutrient contents were determined post-harvest. Additionally, relative chlorophyll content, height, cob yield, dry biomass, and FAW infestations were assessed. Results show that both VC and VCT significantly enhanced soil nutrient content compared to the control treatment (V0). VCT20 and VC1 + VCT10 improved plant N, K, and micronutrient uptake. Corn treated with VCT10 and VC1 + VCT10 had the highest biomass (6.52 and 6.57 tons/ha, respectively), while VCT20 produced the highest cob yield (6.0 tons/ha), which was more than eight times that of V0. SPAD values and corn height were significantly high across all treatments, with VCT20 achieving the highest SPAD readings while the control achieved the lowest. For FAW infestation, the control treatment experienced moderate infestation. At the same time, there was complete suppression in VCT20 and VCT40 treatments and a reduction in VC + VCT treatments, likely due to the bioactive compounds and beneficial microbes in VC and VCT that strengthened plant immunity. The results suggest that VCT20 is a cost-effective, eco-friendly amendment for improving corn performance and FAW resistance. This study contributes to sustainable agriculture by demonstrating how organic amendments can enhance crop resilience while supporting environmentally friendly farming practices.

Keywords: organic soil amendment; sustainable agriculture; pest management; plant physiology; maize; mushroom waste compost (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/13/1433/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/13/1433/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:13:p:1433-:d:1694079

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-04
Handle: RePEc:gam:jagris:v:15:y:2025:i:13:p:1433-:d:1694079