A Knowledge-Driven Smart System Based on Reinforcement Learning for Pork Supply-Demand Regulation
Haohao Song and
Jiquan Wang ()
Additional contact information
Haohao Song: College of Engineering, Northeast Agricultural University, Harbin 150030, China
Jiquan Wang: College of Engineering, Northeast Agricultural University, Harbin 150030, China
Agriculture, 2025, vol. 15, issue 14, 1-34
Abstract:
With the advancement of Agriculture 4.0, intelligent systems and data-driven technologies offer new opportunities for pork supply-demand balance regulation, while also confronting challenges such as production cycle fluctuations and epidemic outbreaks. This paper introduces a knowledge-driven smart system for pork supply-demand regulation, which integrates essential components including a knowledge base, a mathematical-model-based expert system, an enhanced optimization framework, and a real-time feedback mechanism. Around the core of the system, a nonlinear constrained optimization model is established, which uses adjustments to newly retained gilts as decision variables and minimizes supply-demand squared errors as its objective function, incorporating multi-dimensional factors such as pig growth dynamics, epidemic impacts, consumption trends, and international trade into its analytical framework. By harnessing dynamic decision-making capabilities of reinforcement learning (RL), we design an optimization architecture centered on the Q-learning mechanism and dual-strategy pools, which is integrated into the honey badger algorithm to form the RL-enhanced honey badger algorithm (RLEHBA). This innovation achieves an efficient balance between exploration and exploitation in model solving and improves system adaptability. Numerical experiments demonstrate RLEHBA’s superior performance over State-of-the-Art algorithms on the CEC 2017 benchmark. A case study of China’s 2026 pork regulation confirms the system’s practical value in stabilizing the supply-demand balance and optimizing resource allocation. Finally, some targeted managerial insights are proposed. This study constructs a replicable framework for intelligent livestock regulation, and it also holds transformative significance for sustainable and adaptive supply chain management in global agri-food systems.
Keywords: knowledge-driven; supply-demand regulation; reinforcement learning; agricultural cybernetics (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/14/1484/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/14/1484/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:14:p:1484-:d:1699095
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().