EconPapers    
Economics at your fingertips  
 

Relative Growth Rate and Specific Absorption Rate of Nutrients in Lactuca sativa L. Under Secondary Paper Sludge Application and Soil Contamination with Lead

Elena Ikkonen () and Marija Yurkevich
Additional contact information
Elena Ikkonen: Department of Multidisciplinary Scientific Research, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia
Marija Yurkevich: Department of Multidisciplinary Scientific Research, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia

Agriculture, 2025, vol. 15, issue 14, 1-16

Abstract: Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill sludge on the relative growth rate (RGR) and its determinants, as well as the specific absorption rate (SAR) of nutrients of Lactuca sativa L. For the 46-day pot experiment, which was carried out in 2022 under controlled conditions at the Karelian Research Centre of RAS, sandy loam soil was used, to which Pb was added at rates of 0, 50, and 250 mg Pb(NO 3 ) 2 kg −1 . Secondary sludge was applied with each watering at concentrations of 0%, 20%, and 40%. RGR values varied significantly, primarily due to changes in net assimilation rate (NAR) rather than specific leaf area. Positive relationships were found between RGR and NAR, and RGR and SAR of nitrogen and phosphorus, but not potassium. Sludge applications can stimulate NAR at early stages of plant growth. For plants grown on soil with the highest Pb concentration studied, secondary sludge reduced root lead content by an average of 35%. Soil contamination with lead increased nutrient SAR by 79 and 39% when applied as 20 and 40% sludge, respectively, while 40% sludge increased nitrogen SAR by 51% but did not change phosphorus and potassium SAR. A sludge-mediated reduction in root Pb content and an increase in NAR suggest that secondary paper sludge may contribute to the remediation of Pb-contaminated soils and reduce the toxicity of heavy metals to plants. The results may help in finding new ways to manage soil fertility, especially for contaminated soils.

Keywords: specific leaf area; net assimilation rate; nitrogen; phosphorus; potassium (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/14/1541/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/14/1541/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:14:p:1541-:d:1704032

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-18
Handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1541-:d:1704032