Spatiotemporal Differentiation of Carbon Emission Efficiency and Influencing Factors in the Five Major Maize Producing Areas of China
Zhiyuan Zhang and
Huiyan Qin ()
Additional contact information
Zhiyuan Zhang: College of Economics & Management, Northeast Forestry University, Harbin 150040, China
Huiyan Qin: College of Economics & Management, Northeast Forestry University, Harbin 150040, China
Agriculture, 2025, vol. 15, issue 15, 1-23
Abstract:
Understanding the carbon emission efficiency (CEE) of maize production and its determinants is critical to supporting China’s dual-carbon goals and advancing sustainable agriculture. This study employs a super-efficiency slack-based measure model (SBM) to evaluate the CEE of five major maize-producing regions in China from 2001 to 2022. Kernel density estimation and the Dagum Gini coefficient are used to analyze spatiotemporal disparities, while a geographically and temporally weighted regression (GTWR) model explores the underlying drivers. Results indicate that the national average maize CEE was 0.86, exhibiting a “W-shaped” fluctuation with turning points in 2009 and 2016. From 2001 to 2015, the Southwestern Mountainous Region led with an average efficiency of 0.76. Post-2015, the Northern Spring Maize Region emerged as the most efficient area, reaching 0.90. Efficiency levels have generally become more concentrated across regions, though the Southern Hilly and Northwest Irrigated Regions showed higher volatility. Inter-regional differences were the primary source of overall CEE disparity, with an average annual contribution of 46.66%, largely driven by the efficiency gap between the Northwest Irrigated Region and other areas. Spatial heterogeneity was evident in the impact of key factors. Agricultural mechanization, cropping structure, and environmental regulation exhibited region-specific effects. Rural economic development and agricultural fiscal support were positively associated with CEE, while urbanization had a negative correlation. These findings provide a theoretical foundation and policy reference for region-specific emission reduction strategies and the green transition of maize production in China.
Keywords: carbon emission efficiency; China’s five major maize-producing regions; super-efficiency SBM model; geographically and temporally weighted regression (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/15/1621/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/15/1621/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:15:p:1621-:d:1710674
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().