RFR-YOLO-Based Recognition Method for Dairy Cow Behavior in Farming Environments
Congcong Li (),
Jialong Ma,
Shifeng Cao and
Leifeng Guo
Additional contact information
Congcong Li: College of Information Science and Technology, Hebei Agricultural University, Baoding 071001, China
Jialong Ma: College of Information Science and Technology, Hebei Agricultural University, Baoding 071001, China
Shifeng Cao: College of Information Science and Technology, Hebei Agricultural University, Baoding 071001, China
Leifeng Guo: Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Agriculture, 2025, vol. 15, issue 18, 1-22
Abstract:
Cow behavior recognition constitutes a fundamental element of effective cow health monitoring and intelligent farming systems. Within large-scale cow farming environments, several critical challenges persist, including the difficulty in accurately capturing behavioral feature information, substantial variations in multi-scale features, and high inter-class similarity among different cow behaviors. To address these limitations, this study introduces an enhanced target detection algorithm for cow behavior recognition, termed RFR-YOLO, which is developed upon the YOLOv11n framework. A well-structured dataset encompassing nine distinct cow behaviors—namely, lying, standing, walking, eating, drinking, licking, grooming, estrus, and limping—is constructed, comprising a total of 13,224 labeled samples. The proposed algorithm incorporates three major technical improvements: First, an Inverted Dilated Convolution module (Region Semantic Inverted Convolution, RsiConv) is designed and seamlessly integrated with the C3K2 module to form the C3K2_Rsi module, which effectively reduces computational overhead while enhancing feature representation. Second, a Four-branch Multi-scale Dilated Attention mechanism (Four Multi-Scale Dilated Attention, FMSDA) is incorporated into the network architecture, enabling the scale-specific features to align with the corresponding receptive fields, thereby improving the model’s capacity to capture multi-scale characteristics. Third, a Reparameterized Generalized Residual Feature Pyramid Network (Reparameterized Generalized Residual-FPN, RepGRFPN) is introduced as the Neck component, allowing for the features to propagate through differentiated pathways and enabling flexible control over multi-scale feature expression, thereby facilitating efficient feature fusion and mitigating the impact of behavioral similarity. The experimental results demonstrate that RFR-YOLO achieves precision, recall, mAP50, and mAP50:95 values of 95.9%, 91.2%, 94.9%, and 85.2%, respectively, representing performance gains of 5.5%, 5%, 5.6%, and 3.5% over the baseline model. Despite a marginal increase in computational complexity of 1.4G, the algorithm retains a high detection speed of 147.6 frames per second. The proposed RFR-YOLO algorithm significantly improves the accuracy and robustness of target detection in group cow farming scenarios.
Keywords: cattle behavior recognition; object detection; multi-scale feature representation; YOLOv11n (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/18/1952/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/18/1952/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:18:p:1952-:d:1750090
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().