EconPapers    
Economics at your fingertips  
 

Design and Experiment of Drying Equipment for Alfalfa Bales

Jianqiang Du (), Zhiwen Sun and Zeqi Chen
Additional contact information
Jianqiang Du: Intelligent Equipment for the Whole Process of Forage Feed Production, Inner Mongolia Autonomous Region Engineering Research Center, Hohhot 010018, China
Zhiwen Sun: School of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Zeqi Chen: School of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Agriculture, 2025, vol. 15, issue 19, 1-23

Abstract: Inefficient drying of alfalfa round bales causes significant nutrient loss (up to 50%) and quality degradation due primarily to uneven drying in existing processing methods. To address this challenge requiring dedicated equipment and optimized processes, this study developed a specialized hot-air drying test bench (CGT-1). A coupled heat and mass transfer model was established, and 3D dynamic simulations of temperature, humidity, and wind speed distributions within bales were performed using COMSOL multiphysics to evaluate drying inhomogeneity. Single-factor experiments and multi-factor response surface methodology (RSM) based on Box–Behnken design were employed to investigate the effects of hot air temperature (50–65 °C), wind speed (2–5 m/s), and air duct opening diameter (400–600 mm) on moisture content, drying rate, and energy consumption. Results demonstrated that larger duct diameters (600 mm) and higher wind speeds (5 m/s) significantly enhanced field uniformity. RSM optimization identified optimal parameters: temperature at 65 °C, wind speed of 5 m/s, and duct diameter of 600 mm, achieving a drying time of 119.2 min and a drying rate of 0.62 kg/(kg·min). Validation experiments confirmed the model’s accuracy. These findings provide a solid theoretical foundation and technical support for designing and optimizing alfalfa round-bale drying equipment. Future work should explore segmented drying strategies to enhance energy efficiency.

Keywords: alfalfa round grass bale; hot air drying; finite element analysis; drying characteristics (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/19/2000/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/19/2000/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:19:p:2000-:d:1757450

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-26
Handle: RePEc:gam:jagris:v:15:y:2025:i:19:p:2000-:d:1757450