Early Mapping of Farmland and Crop Planting Structures Using Multi-Temporal UAV Remote Sensing
Lu Wang,
Yuan Qi (),
Juan Zhang,
Rui Yang,
Hongwei Wang,
Jinlong Zhang and
Chao Ma
Additional contact information
Lu Wang: State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Yuan Qi: State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Juan Zhang: State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Rui Yang: State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Hongwei Wang: State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Jinlong Zhang: State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Chao Ma: State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Agriculture, 2025, vol. 15, issue 21, 1-30
Abstract:
Fine-grained identification of crop planting structures provides key data for precision agriculture, thereby supporting scientific production and evidence-based policy making. This study selected a representative experimental farmland in Qingyang, Gansu Province, and acquired Unmanned Aerial Vehicle (UAV) multi-temporal data (six epochs) from multiple sensors (multispectral [visible–NIR], thermal infrared, and LiDAR). By fusing 59 feature indices, we achieved high-accuracy extraction of cropland and planting structures and identified the key feature combinations that discriminate among crops. The results show that (1) multi-source UAV data from April + June can effectively delineate cropland and enable accurate plot segmentation; (2) July is the optimal time window for fine-scale extraction of all planting-structure types in the area (legumes, millet, maize, buckwheat, wheat, sorghum, maize–legume intercropping, and vegetables), with a cumulative importance of 72.26% for the top ten features, while the April + June combination retains most of the separability (67.36%), enabling earlier but slightly less precise mapping; and (3) under July imagery, the SAM (Segment Anything Model) segmentation + RF (Random Forest) classification approach—using the RF-selected top 10 of the 59 features—achieved an overall accuracy of 92.66% with a Kappa of 0.9163, representing a 7.57% improvement over the contemporaneous SAM + CNN (Convolutional Neural Network) method. This work establishes a basis for UAV-based recognition of typical crops in the Qingyang sector of the Loess Plateau and, by deriving optimal recognition timelines and feature combinations from multi-epoch data, offers useful guidance for satellite-based mapping of planting structures across the Loess Plateau following multi-scale data fusion.
Keywords: unmanned aerial vehicle (UAV); early identification of planting structures; optimal feature selection; multi-source data; multi-temporal remote sensing data (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/21/2186/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/21/2186/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:21:p:2186-:d:1777194
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().