EconPapers    
Economics at your fingertips  
 

Metabolomic Profiling of Heat Tolerance During Grain Filling in Rice: Comparative Analyses of Panicles and Roots in ‘Fusaotome’ and ‘Akitakomachi’

Atsushi Ogawa (), Saki Yoshino and Kyoko Toyofuku
Additional contact information
Atsushi Ogawa: Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
Saki Yoshino: Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
Kyoko Toyofuku: Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan

Agriculture, 2025, vol. 15, issue 21, 1-17

Abstract: High temperatures during grain filling degrade rice quality, yet the metabolite-level basis of varietal tolerance—particularly root contributions—remains unclear. We compared the heat-tolerant ‘Fusaotome’ and the widely grown ‘Akitakomachi’ under control and high-temperature conditions. Panicles and roots were sampled at heading and profiled by capillary electrophoresis–mass spectrometry (CE–MS), followed by PCA, univariate testing, and KEGG pathway analysis. PCA resolved treatment and cultivar differences in an organ-specific manner. In panicles, ‘Fusaotome’ showed 8 increased metabolites (≥1.5-fold) and 11 decreased (≤1/1.5), whereas ‘Akitakomachi’ showed 19 increases and 6 decreases ( p < 0.05). In roots, 12 metabolites increased in ‘Fusaotome’ and 9 in ‘Akitakomachi’; no significant decreases were detected. Pathway analysis indicated activation in ‘Fusaotome’ panicles of tryptophan, nicotinate/nicotinamide, arginine/proline, glycolysis/TCA, pyruvate, and vitamin B6 pathways, while ‘Akitakomachi’ emphasized phenylpropanoid, isoquinoline alkaloid, caffeine, and ubiquinone/terpenoid–quinone biosynthesis. In roots, ‘Fusaotome’ prioritized phenylalanine/phenylpropanoid, aromatic amino acids, lysine degradation, branched-chain amino acids, glycerophospholipids, and alkaloids, whereas ‘Akitakomachi’ favored nitrogen- and antioxidant-related routes. Collectively, the tolerant cultivar maintained antioxidant capacity and energy supply while coordinating root–panicle metabolism, whereas the susceptible cultivar shifted toward secondary defenses. These signatures nominate candidate metabolic markers and targets for breeding and management to stabilize rice production under warming climates.

Keywords: grain filling; heat tolerance; metabolomics (CE–MS); Oryza sativa L.; panicle; root (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/21/2255/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/21/2255/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:21:p:2255-:d:1782257

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-30
Handle: RePEc:gam:jagris:v:15:y:2025:i:21:p:2255-:d:1782257