EconPapers    
Economics at your fingertips  
 

Keypoint Detection and 3D Localization Method for Ridge-Cultivated Strawberry Harvesting Robots

Shuo Dai, Tao Bai () and Yunjie Zhao ()
Additional contact information
Shuo Dai: College of Computer Engineering, Xinjiang Agricultural University, Urumqi 830052, China
Tao Bai: Ministry of Education Engineering Research Center for Intelligent Agriculture, Urumqi 830052, China
Yunjie Zhao: Xinjiang Agricultural Information Engineering Technology Research Center, Xinjiang Agricultural University, Urumqi 830052, China

Agriculture, 2025, vol. 15, issue 4, 1-20

Abstract: With the development of intelligent modern agriculture, strawberry harvesting robots play an increasingly important role in precision agriculture. However, existing vision systems face multiple challenges in complex farmland environments, including fruit occlusion, difficulties in recognizing fruits at varying ripeness levels, and limited real-time processing capabilities. This study proposes a keypoint detection and 3D localization method for strawberry fruits utilizing a depth camera to address these challenges. By introducing a Haar Wavelet Downsampling (HWD) module and Gold-YOLO neck, the proposed method achieves significant improvements in feature extraction and detection performance. The integration of the HWD module effectively reduces image noise, enhances feature extraction accuracy, and strengthens the method’s ability to recognize fruit stems. Additionally, incorporating the Gold-YOLO neck structure enhances multi-scale feature fusion, improving detection accuracy and enabling the method to adapt to complex environments. To further accelerate inference speed and enable deployment in an embedded system, Layer-adaptive sparsity for Magnitude-based Pruning (LAMP) technology is employed, significantly reducing redundant parameters and thereby enhancing the lightweight performance of the model. Experimental results demonstrate that the proposed method can accurately identify strawberries at different ripeness stages and exhibits strong robustness under various lighting conditions and complex scenarios, achieving an average precision of 97.3% while reducing model parameters to 38.2% of the original model, significantly improving the efficiency of strawberry fruit localization. This method provides robust technical support for the practical application and widespread adoption of agricultural robots.

Keywords: ridge-planted strawberries; keypoint detection; depth camera; Haar wavelet downsampling; LAMP pruning (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/4/372/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/4/372/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:4:p:372-:d:1588057

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:372-:d:1588057