DHS-YOLO: Enhanced Detection of Slender Wheat Seedlings Under Dynamic Illumination Conditions
Xuhua Dong () and
Jingbang Pan
Additional contact information
Xuhua Dong: Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310058, China
Jingbang Pan: Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
Agriculture, 2025, vol. 15, issue 5, 1-23
Abstract:
The precise identification of wheat seedlings in unmanned aerial vehicle (UAV) imagery is fundamental for implementing precision agricultural practices such as targeted pesticide application and irrigation management. This detection task presents significant technical challenges due to two inherent complexities: (1) environmental interference from variable illumination conditions and (2) morphological characteristics of wheat seedlings characterized by slender leaf structures and flexible posture variations. To address these challenges, we propose DHS-YOLO, a novel deep learning framework optimized for robust wheat seedling detection under diverse illumination intensities. Our methodology builds upon the YOLOv11 architecture with three principal enhancements: First, the Dynamic Slender Convolution (DSC) module employs deformable convolutions to adaptively capture the elongated morphological features of wheat leaves. Second, the Histogram Transformer (HT) module integrates a dynamic-range spatial attention mechanism to mitigate illumination-induced image degradation. Third, we implement the ShapeIoU loss function that prioritizes geometric consistency between predicted and ground truth bounding boxes, particularly optimizing for slender plant structures. The experimental validation was conducted using a custom UAV-captured dataset containing wheat seedling images under varying illumination conditions. Compared to the existing models, the proposed model achieved the best performance with precision, recall, mAP50, and mAP50-95 values of 94.1%, 91.0%, 95.2%, and 81.9%, respectively. These results demonstrate our model’s effectiveness in overcoming illumination variations while maintaining high sensitivity to fine plant structures. This research contributes an optimized computer vision solution for precision agriculture applications, particularly enabling automated field management systems through reliable crop detection in challenging environmental conditions.
Keywords: dynamic slender convolution; histogram transformer; ShapeIoU; illumination-induced degeneration (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/5/510/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/5/510/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:5:p:510-:d:1600692
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().