EconPapers    
Economics at your fingertips  
 

Environmental Monitoring and Thermal Data Analysis Related to Mortality Rates in a Commercial Pig House

Hyo-Jae Seo, Byung-Wook Oh and Il-Hwan Seo ()
Additional contact information
Hyo-Jae Seo: Department of Rural Construction Engineering, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
Byung-Wook Oh: Climate Change Assessment Division Agriculture Environment Department, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea
Il-Hwan Seo: Department of Rural Construction Engineering, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea

Agriculture, 2025, vol. 15, issue 6, 1-14

Abstract: Diseases in pig houses not only hinder the growth and productivity of pigs but also result in significant economic losses for farmers due to high mortality rates. Although viral infections, including PRRS and PCV-2, are the primary causes, the likelihood of disease onset is closely linked to the pigs’ immune status, which is often compromised by environmental stressors. This study aimed to investigate the relationship between environmental conditions and pig mortality through detailed field monitoring in a commercial pig house with 600 growing pigs. The facility, which experienced a surge in mortality after a ventilation system change, was analyzed for various environmental parameters, including ammonia concentration (range: 7.0–10.7 ppm), dust levels (PM10: 106 µg/m 3 , PM2.5: 45 µg/m 3 ), ventilation rates (0.49 AER, 67% of design capacity), air temperature (mean: 22.3 °C, range: 18.1–28.7 °C), and relative humidity (mean: 67.4%, range: 55.3–83.2%). Pig mortality and its spatial distribution were recorded, while viral infections were identified using RT-PCR, detecting pathogens such as PRRS, PCV-2, Mycoplasma hyopneumoniae, and Salmonella . Our findings revealed that although dust and ammonia concentrations remained within permissible limits, mortality was significantly correlated with thermal instability. Chronic respiratory diseases were observed in regions where ventilation was concentrated, resulting in daily temperature variations as high as 6.64 °C. The combination of improper ventilation and frequent temperature fluctuations weakened the pigs’ immunity, facilitating the onset of disease. This research underscores the critical role of maintaining stable microclimatic conditions in reducing mortality and highlights the need for advanced automated environmental control systems in smart livestock barns. The insights gained from this study provide a foundational framework for developing precision ventilation and thermal management strategies to enhance productivity and animal welfare.

Keywords: aerodynamics; animal disease; breeding environment; climate stress; livestock house (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/6/635/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/6/635/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:6:p:635-:d:1614145

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jagris:v:15:y:2025:i:6:p:635-:d:1614145