Configurational Comparison of a Binary Logic Transmission Unit Applicable to Agricultural Tractor Hydro-Mechanical Continuously Variable Transmissions and Its Wet Clutch Optimization Design Based on an Improved General Regression Neural Network
Wenjie Li,
Zhun Cheng () and
Mengchen Yang
Additional contact information
Wenjie Li: College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
Zhun Cheng: College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
Mengchen Yang: College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
Agriculture, 2025, vol. 15, issue 8, 1-34
Abstract:
Binary logic transmission (BLT), a stepped transmission system, has been utilized in military vehicles and heavy-duty commercial vehicles due to its high transmission efficiency, strong load-bearing capacity, and compact structure. Its adaptability to agricultural tractor operations is notable. This study modularizes BLT into a binary logic transmission unit (BLT-U) for application in agricultural tractor Hydro-Mechanical Continuously Variable Transmission (HMCVT), optimizing its wet clutch to enhance HMCVT shifting performance. This provides a basis for BLT-U’s application in other transmission systems and subsequent optimization. A wet clutch test bench was employed to validate the modeling approach. The optimal BLT-U configuration was selected using both light/heavy load conditions and subjective–objective evaluation criteria. The WOA improved the spread value in the GRNN algorithm, establishing a GRNN to predict the optimal range for wet clutch design values in BLT-U; the model validation showed an average correlation coefficient of 0.92 for speed curves and an average relative error of 5.58% for dynamic loads. Under light-load conditions, the optimal configuration improved average and maximum scores by 13.38% and 11.53%, respectively, while under heavy-load conditions, the corresponding improvements were 9.38% and 5.86%. Under light-load conditions, the optimized GRNN reduced total relative error by 39.6%, while under heavy-load conditions, it achieved a 61% reduction. This study confirms the rationality of the modeling method, identifies Configuration 1 as optimal, and determines the optimal range for clutch design values under light-load and heavy-load conditions, respectively.
Keywords: agricultural tractor; HMCVT; binary logic transmission unit; improved neural network algorithm; wet clutch optimization design (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/15/8/877/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/8/877/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:8:p:877-:d:1636616
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().