EconPapers    
Economics at your fingertips  
 

Sustaining Chili Pepper Production in Afghanistan through Better Irrigation Practices and Management

S. Alan Walters and Ajay K. Jha
Additional contact information
S. Alan Walters: Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
Ajay K. Jha: Institute for Global Agriculture & Technology Transfer (IGATT), Fort Collins, CO 80528, USA

Agriculture, 2016, vol. 6, issue 4, 1-10

Abstract: Water management and utilization is an ongoing problem in developing countries with semi-arid to arid climates such as Afghanistan. The lack of effective irrigation systems are oftentimes the most limiting factor for maximizing agricultural productivity in these countries. In Afghanistan, the most widely used irrigation methods are basin/border for cereal crops and furrow for vegetables and grapes, although drip irrigation is a technology that could be used to significantly improve water use efficiency (WUE) in horticultural crop production. Therefore, three irrigation methods (basin, furrow, and drip) were evaluated for their influences on chili pepper production and WUE at the Afghanistan Ministry of Agriculture, Irrigation and Livestock (MAIL) Badam Bagh Agricultural Research and Demonstration Farm in Kabul over the 2009 and 2010 growing seasons. Results from this study indicated that both drip and furrow irrigation provided similar high chili pepper plant growth and yield responses compared to the low amounts provided by basin irrigation ( p ≤ 0.05). The drip and furrow irrigation methods provided a similar low incidence of Phytophthora blight disease, as 4% and 7% of chili pepper plants were visually afflicted by this disease, respectively, while an astounding 69% of chili peppers grown with basin irrigation had symptoms of this disease. Drip irrigation resulted in the best overall WUE ( p ≤ 0.05), as this water delivery method utilized the least amount of water and provided the highest chili pepper yield. Furrow irrigation provided a lower WUE compared to drip, but was greater than that of basin irrigation. Although this study indicated that drip irrigation had the greatest WUE for chili pepper production, furrow irrigation is still the method of choice by farmers in Afghanistan to provide water to this crop. The associated costs with pressurized drip irrigation systems are too expensive for farmers to purchase and maintain, which has led to the widespread use of surface irrigation. Moreover, the resistance of growers to change to newer and more advanced technologies is commonplace in many developing countries, and without some type of improvement to current water management practices at the farm level, there is a bleak outlook to maximize agricultural productivity in these areas of the world with limited rainfall and minimal water resources. Although it is essential to sustain this important resource through better irrigation management practices, on-farm agricultural economics are often more important than the needs of future generations and the environment.

Keywords: agricultural extension; Badam Bagh; Afghanistan; food security; sustainable agriculture; water-use efficiency; vegetable production (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/6/4/62/pdf (application/pdf)
https://www.mdpi.com/2077-0472/6/4/62/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:6:y:2016:i:4:p:62-:d:83595

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-18
Handle: RePEc:gam:jagris:v:6:y:2016:i:4:p:62-:d:83595