EconPapers    
Economics at your fingertips  
 

Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus ( Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions

Manuel M De Souza, Carlos Rafael Mendes, Kennia B. Doncato, Eliana Badiale-Furlong and César S. B. Costa
Additional contact information
Manuel M De Souza: Laboratório de Biotecnologia de Halófitas (BTH), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Av. Itália km 8, Rio Grande, RS 96203-900, Brazil
Carlos Rafael Mendes: Laboratório de Fitoplâncton e Microorganismos Marinhos, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
Kennia B. Doncato: Laboratório de Biotecnologia de Halófitas (BTH), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Av. Itália km 8, Rio Grande, RS 96203-900, Brazil
Eliana Badiale-Furlong: Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
César S. B. Costa: Laboratório de Biotecnologia de Halófitas (BTH), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Av. Itália km 8, Rio Grande, RS 96203-900, Brazil

Agriculture, 2018, vol. 8, issue 7, 1-18

Abstract: Small succulent halophytic shrubs of the genera Salicornia and Sarcocornia (Salicornioideae, Amaranthaceae) are commonly named sea asparagus and consumed worldwide as green salad in gourmet food, as conserves, and beverages. Their shoots are rich in bioactive compounds and plants show high yields in a wide range of salinities, but little is known about how salt cultivation conditions affect their chemical composition. Two genotypes (BTH1 and BTH2) of the Brazilian sea asparagus Salicornia neei Lag. were evaluated for salt tolerance and changes in shoot concentrations of organic metabolites and antioxidant activity under different salt exposure in both greenhouse and field conditions. All greenhouse plants received full strength modified Hoagland solution in deionized water with a basic electrical conductivity (EC) of 1.7 dS m −1 , and with NaCl concentrations (in mM) of ~0.1 (control), 34, 86, 171, 513, and 769. After fifty days of cultivation, both S. neei genotypes showed high salt tolerance and grew better under low salinities (34–86 mM NaCl) than under control salinity. Shoots of BTH1 genotype appeared to be undergoing lignification and used their high carotenoid content to dissipate the oxidative power, and the zeaxanthin content and de-epoxidation state of xanthophylls (DES) were positively affected by salinity. Under increasing salinity, BTH2 genotype had higher relative content of chlorophyll b, which may have lowered the plant photo-oxidation rate, and increased shoot concentration of the flavonoid quercetin (up to 11.6 μg g −1 dw at 769 mM NaCl), leading to higher antioxidant capacity. In the field experiment, after 154 days of irrigation with saline (213 mM NaCl) shrimp farm effluent, BTH2 plants grew taller, produced more metabolites (e.g., total phenolics, total free flavonoids, quercetin, and protocatechuic acid) and had a greater antioxidant capacity of shoots than that of BTH1 plants and that of traditional crops irrigated with fresh water. Yield and bioactive compound composition of S. neei genotypes’ shoots can be enhanced by cultivation under moderate saline conditions.

Keywords: halophyte; salt stress; functional food; shrimp farm effluent; breeding program (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2077-0472/8/7/115/pdf (application/pdf)
https://www.mdpi.com/2077-0472/8/7/115/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:8:y:2018:i:7:p:115-:d:159394

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jagris:v:8:y:2018:i:7:p:115-:d:159394